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Abstract 

GF- Structure Manifolds were defined and studied by Prof. Duggal, K.L, (1971), Prof. Mishra, R.S. (1974) and 

many other geometers. 

            In this paper, I have defined real vector space with GF- Structure and B-Scalar product and certain 

results have been proved. It has been proved that B-Scalar product admits an Orthonormal J-Base .Besides this 

certain results have also been proved. GF-Structure, Generalised B-manifold has also been studied and certain 

results on GF-Structure, Generalised B-manifolds, have also been established. Some results on Connections 

have also been obtained. 

 

On Generalised B-Manifolds 

 

In this paper, we have defined and studied generalised B-Manifolds. Certain interesting theorems have 

been proved. Some results on connections have also been obtained. 

 

1. Real vector space with GF-structure and B-scalar product. 

 

Let V be a 2n dimensional real vector space with GF-Structure F
2
 =a

2
I where I is the identity of the vector space 

V. It is well known that a scalar product g on V is said to be Hermitian scalar product iff      g (FX, FY) =g(X, 

Y) for all X, VY  . 

 

Theorem 1: Let V be a 2n dimensional real vector space admitting GF–structure. If h is any GF-bilinear 

symmetric non degenerate form on V considered as an n dimensional GF-structure Manifold, then h is B-scalar 

product on the real vector space V. 

 

Proof: Let us consider real vector space V with GF–structure J as an n dimensional complex vector space where 

aX = -JX for VX  . Let h be a GF-bilinear symmetric non degenerate forms on the GF-structure Manifold V. 

Putting h(X, Y) =g(X, Y) –aF(X, Y), for X, VY  , g and F are bilinear symmetric non degenerate forms on the 

vector space V. Thus we get 

g(JX, JY) = a
2
g(X,Y), F(JX, JY)= a

2
F(X,Y) because of the symmetry of g and F. 

Let (V, g, J) be a 2n dimensional vector space V, with a structure J and a B- scalar product g and U be a linear 

subspace of V. The space U is called non degenerate if the restriction of g on U is a non degenerate form on U. 

Then U is called degenerate (isotropic) space i.e. there exists a non zero vector ZU┴ orthogonal to 

})0{(:  UUU .A vector subspace U is called a completely isotropic space, if every vector  ZU┴ is 

null vector. The set of the null vectors in V is called isotropic cone. The space U is called holomorphic if JU=U. 

It is clear that the orthogonal complement U┴ of U is also a holomorphic linear space .We shall call a base {X1, 

X2,…, Xn; 
1XJ , …,

nXJ  } orthonormal  J base if    0, 
iXi JXg  and g(Xi, Xj) = ij, where ij is Kroneker’ 

s symbol. For this base we have   ijXX ji
JJg , .  

 

Theorem 2:  Any vector space with a GF-structure and a B-scalar product admits an orthonormal J- base. 

 

Proof:  Let (V, g, f) be a 2n dimensional real vector space with a GF-structure and a B-scalar product. Let α1CV 

be any linear non degenerate holomorphic two dimensional space (non degenerate holomorphic 2-plane) 

spanned by X, JX where X is not a null vector. Let us denote by X the vector g(X,X)
- 2/1

X When g(X, X)>0 or 

g (JX,JX)
- 2/1

JX ,  when g(X, X)<0. Considering vector X1 such that 1),(, 111  XXgJXX X  
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and 0),(
11 XJXg . Thus },{

11 XJX is a unique (in spite of orientation) orthonormal J – base of α1. Let 

},...,3,2{, nii   be a non degenerate holomorphic 2 plane. Every 2-plane },...,2,1{, njj  admits an 

orthonormal J base },{
jXJ JX . Therefore },...,,,,...,,{

2121 nXXXn JJJXXX  is an orthonormal J- base of V. 

Thus from the proof of the theorem (2) it is clear that (V, g, f) is a direct sum of n non- degenerate holomorphic 

2 planes. On the other hand, (V, g, J) is a direct sum of two maximal completely isotropic n dimensional linear 

subspaces U and W. Really let },...,,,,...,,{
2121 nXXXn JJJXXX be an orthonormal J-base of V. Then 

putting fi= iX XJ
i
 , iXi XJe

i
  we get bases {f1, f2, ..., fn}, {e1, e2, …, en} of  U and W respectively. It is 

clear that {f1, f2, ..., fn, e1, e2, …, en} is a base of V. we have  g(fi , fj)=g(ei , ej)=0, g(fi , ej)= -2δij. A base like the 

last one is called skew base [1]. 

We note that according to theorem (2) the space ( V, g, J ) is a pseudo- Euclidean vector space with structure (n, 

n )because (V, g, J) is isometric to the real co-ordinate 2n-dimensional vector space R
2n

 with bilinear form 

bn(X,Y)=∑(XiYj - XjYi) 

Where  X=(X
1
, X

2
,…,X

2n
),    Y=(Y

1
, Y

2
,…,Y

2n
) in R

2n
. 

Let (V, J) be a vector space with a GF-structure and let 
n

c RVV 2  

We have 
1,00,1 VVVc   where  VXaJXV X  /0,1

. We can verify directly the following theorem 

[2]. 

 

Theorem 3:  A B-scalar product g on (V, J) can be continued uniquely to a GF-symmetric bilinear form g  on 

VC  such that  

(a) g  (X, Y) =0 for X V
1,0 

 and Y   V
0,1

 

(b) g  (X,X) ≠ 0 at least for some X   VC 

(c) g  (X,Y) = g  (Y,X), for X, YVC 

Conversely every GF-symmetric bilinear form g on VC with properties a, b, c is a natural continuation of a B 

scalar product g on (V, J). 

 

2. Generalised B-Manifold: 

 

Let g be pseudo Riemannian metric on almost GF-Manifold (M, ). We shall call g as B-metric, if g(X, 

Y) = -g(X, Y) for X, Y  (M). Evidently, a B-metric g on M defines a B-scalar product gp in every 

tangent space TP (M), Mp  with respect to the GF-structure  p of TP (M) induced by the almost GF-

structure   of M. We shall call every almost GF-manifold with a B-metric a generalized B-manifold and let us 

denote by GB the class of generalised B-manifolds. 

Let GBM  and   be the Levi-Civita connection generated by the metric g of M if  0J , then M is the 

known B-Manifold 

It is known that every paracompact manifold admits a Riemannian metric. If h is a Riemannian metric on a 

paracompact almost GF-structure manifold  ,M , which is not a Hermitian one, then the metric g with a 

property      YXhYXhYXg  ,,,  for all  MYX , is a B-metric. 

 

Lemma 1: If GBM   and  MZYX ,, , then 

(2.1)      YZgZYg XX ,,   

(2.2)      YZgJZYg XX  ,,  

(2.3)      ZYgZYg XX ,,   

Where  is the Levi-Civita connection generated by g. 

 

Proof: Since GBM  , so    YX XZgYZg  ,, for all  MZYX ,, . Since   is Levi-Civita 

connection, the last identity gives (2.1) and since M is an almost GF-manifold, it follows that 

 

(2.4)     YY XX   
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The identity (2.2) follows from (2.1) and (2.4). Also (2.3) follows from the condition that g is a B-metric and 

(2.4). 

Now we define a tensorfield  of type (0,3) by the condition 

 

(2.5)           YXgXZgZYgZYX ZYX ,,,,,   for  MZYX ,,  

 

Because of (2.1) the tensorfield   is symmetric with respect to any two arguments. By virtue of lemma (1) and 

relations (2.4) and (2.5), we state the following assertion. 

 

Lemma 2: Let GBM   and N be the Nijenhuis tensor of . Then for all  MZYX ,,  we have 

             XZYNgZYXZYXYYXg ZZ   ,,,,,,,2   

Where 

         YZYZZYN ZYZY  ,  

For GBM  , we shall call M a normal generalized B-manifold if N=0 and let us denote the class of these 

manifolds by R
GB

 

Using lemma (1) and lemma (2), we can prove the following theorem 

 

Theorem 4: If
GBRM  , then BM   when 0  

         Because of theorem (4), we have the following result. 

 

Theorem 5: Let GBM   and  MYX , . Then the following assertions are equivalent: 

(a) BM   

(b)     1,  XY YX  

(c)     MYY XX   ,  

(d)           0,1   XYXYYYXN YXX  

(e)           0,1   XYXYYXQ YXYX  

 

Proof: Using lemma (1), after some calculations we find the identities. 

 

                 ZXgYXZgYXZNgXZYNgZYXNg YZX   ,,2,,,,,, 111

 

                 YXgZYXgYXZQgXZYQgZYXQg ZXY   ,,2,,,,,, 111

 

 

by means of these identities, lemma (1) and (2) we establish correctness of the theorem. 
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