On Generalised B- Manifolds

S.K. Srivastava ${ }^{1}$, Virendra Nath Pathak ${ }^{2}$
${ }^{I}$ D.D.U. Gorakhpur University Gorakhpur, India.
E-mail-sudhir66@rediffmail.com
${ }^{2}$ Shri Ramswaroop Memorial Group of Professional Colleges Lucknow, India. E-mail-pathak_virendra@rediffmail.com Moible No-91-9415063248

Abstract

GF- Structure Manifolds were defined and studied by Prof. Duggal, K.L, (1971), Prof. Mishra, R.S. (1974) and many other geometers.

In this paper, I have defined real vector space with GF- Structure and B-Scalar product and certain results have been proved. It has been proved that B-Scalar product admits an Orthonormal J-Base .Besides this certain results have also been proved. GF-Structure, Generalised B-manifold has also been studied and certain results on GF-Structure, Generalised B-manifolds, have also been established. Some results on Connections have also been obtained.

On Generalised B-Manifolds

In this paper, we have defined and studied generalised B-Manifolds. Certain interesting theorems have been proved. Some results on connections have also been obtained.

1. Real vector space with GF-structure and B-scalar product.

Let V be a $2 n$ dimensional real vector space with GF-Structure $F^{2}=a^{2} I$ where I is the identity of the vector space V. It is well known that a scalar product g on V is said to be Hermitian scalar product iff $\mathrm{g}(\mathrm{FX}, \mathrm{FY})=\mathrm{g}(\mathrm{X}$, Y) for all $\mathrm{X}, Y \in V$.

Theorem 1: Let V be a 2 n dimensional real vector space admitting GF-structure. If h is any GF-bilinear symmetric non degenerate form on V considered as an n dimensional GF-structure Manifold, then h is B-scalar product on the real vector space V .

Proof: Let us consider real vector space V with GF -structure J as an n dimensional complex vector space where $\mathrm{aX}=-\mathrm{JX}$ for $X \in V$. Let h be a GF-bilinear symmetric non degenerate forms on the GF-structure Manifold V.
Putting $\mathrm{h}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{aF}(\mathrm{X}, \mathrm{Y})$, for $\mathrm{X}, Y \in V, \mathrm{~g}$ and F are bilinear symmetric non degenerate forms on the vector space V. Thus we get
$g(J X, J Y)=a^{2} g(X, Y), F(J X, J Y)=a^{2} F(X, Y)$ because of the symmetry of g and F.
Let $(\mathrm{V}, \mathrm{g}, \mathrm{J}$) be a 2 n dimensional vector space V , with a structure J and a B - scalar product g and U be a linear subspace of V . The space U is called non degenerate if the restriction of g on U is a non degenerate form on U. Then U is called degenerate (isotropic) space i.e. there exists a non zero vector $\mathrm{Z} \in \mathrm{U}^{\perp}$ orthogonal to $U:\left(U \cap U^{\perp} \neq\{0\}\right)$. A vector subspace U is called a completely isotropic space, if every vector $Z \in U^{\perp}$ is null vector. The set of the null vectors in V is called isotropic cone. The space U is called holomorphic if $J U=U$. It is clear that the orthogonal complement U^{\perp} of U is also a holomorphic linear space. We shall call a base $\left\{\mathrm{X}_{1}\right.$, $\left.\mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}} ; J_{X_{1}}, \ldots, J_{X_{n}}\right\}$ orthonormal J base if $g\left(X_{i}, J_{X_{i}}\right)=0$ and $\mathrm{g}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)=\delta \mathrm{ij}$, where δ ij is Kroneker' s symbol. For this base we have $g\left(J_{X_{i}}, J_{X_{j}}\right)=-\delta_{i j}$.

Theorem 2: Any vector space with a GF-structure and a B-scalar product admits an orthonormal J- base.
Proof: Let (V, g, f) be a 2 n dimensional real vector space with a GF-structure and a B-scalar product. Let $\alpha_{1} \mathrm{CV}$ be any linear non degenerate holomorphic two dimensional space (non degenerate holomorphic 2-plane) spanned by X, J_{X} where X is not a null vector. Let us denote by X the vector $g(X, X)^{-1 / 2} X$ When $g(X, X)>0$ or $\mathrm{g}\left(\mathrm{J}_{\mathrm{X}}, \mathrm{J}_{\mathrm{X}}\right)^{-1 / 2} \mathrm{~J}_{\mathrm{X}}$, when $\mathrm{g}(\mathrm{X}, \mathrm{X})<0$. Considering vector X_{1} such that $X_{1}=\lambda X+\gamma J_{X}, g\left(X_{1}, X_{1}\right)=1$
and $g\left(X_{1}, J_{X_{1}}\right)=0$. Thus $\left\{X_{1}, J_{X_{1}}\right\}$ is a unique (in spite of orientation) orthonormal $\mathrm{J}-$ base of α_{1}. Let $\alpha_{i}, i \in\{2,3, \ldots, n\}$ be a non degenerate holomorphic 2 plane. Every 2-plane $\alpha_{j}, j \in\{1,2, \ldots, n\}$ admits an orthonormal J base $\left\{X_{J}, J_{X_{j}}\right\}$. Therefore $\left\{X_{1}, X_{2}, \ldots, X_{n}, J_{X_{1}}, J_{X_{2}}, \ldots, J_{X_{n}}\right\}$ is an orthonormal J- base of V.
Thus from the proof of the theorem (2) it is clear that (V, g, f) is a direct sum of n non- degenerate holomorphic 2 planes. On the other hand, ($\mathrm{V}, \mathrm{g}, \mathrm{J}$) is a direct sum of two maximal completely isotropic n dimensional linear subspaces U and W . Really let $\left\{X_{1}, X_{2}, \ldots, X_{n}, J_{X_{1}}, J_{X_{2}}, \ldots, J_{X_{n}}\right\}$ be an orthonormal J-base of V. Then putting $\mathrm{f}_{\mathrm{i}}=J_{X_{i}}-X_{i}, e_{i}=J_{X_{i}}+X_{i}$ we get bases $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right\},\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ of U and W respectively. It is clear that $\left\{f_{1}, f_{2}, \ldots, f_{n}, e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a base of V. we have $g\left(f_{i}, f_{j}\right)=g\left(e_{i}, e_{j}\right)=0, g\left(f_{i}, e_{j}\right)=-2 \delta_{i j}$. A base like the last one is called skew base [1].
We note that according to theorem (2) the space ($\mathrm{V}, \mathrm{g}, \mathrm{J}$) is a pseudo- Euclidean vector space with structure (n , n)because ($\mathrm{V}, \mathrm{g}, \mathrm{J}$) is isometric to the real co-ordinate 2 n -dimensional vector space $\mathrm{R}^{2 \mathrm{n}}$ with bilinear form $\mathrm{b}_{\mathrm{n}}(\mathrm{X}, \mathrm{Y})=\sum\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}} \mathrm{Y}_{\mathrm{i}}\right)$

Where $\mathrm{X}=\left(\mathrm{X}^{1}, \mathrm{X}^{2}, \ldots, \mathrm{X}^{2 \mathrm{n}}\right), \quad \mathrm{Y}=\left(\mathrm{Y}^{1}, \mathrm{Y}^{2}, \ldots, \mathrm{Y}^{2 \mathrm{n}}\right)$ in $\mathrm{R}^{2 \mathrm{n}}$.
Let (V, J) be a vector space with a GF-structure and let $V_{c}=V \otimes R^{2 n}$
We have $V_{c}=V^{1,0}+V^{0,1}$ where $V^{1,0}=\left\{X-a J_{X} / X \in V\right\}$. We can verify directly the following theorem [2].

Theorem 3: A B-scalar product g on (V, J) can be continued uniquely to a GF-symmetric bilinear form g^{\prime} on V_{C} such that
(a) $g^{\prime}(\mathrm{X}, \mathrm{Y})=0$ for $\mathrm{X} \in \mathrm{V}^{1,0}$ and $\mathrm{Y} \in \mathrm{V}^{0,1}$
(b) $g^{\prime}(\mathrm{X}, \mathrm{X}) \neq 0$ at least for some $\mathrm{X} \in \mathrm{V}_{\mathrm{C}}$
(c) $g^{\prime}(\mathrm{X}, \mathrm{Y})=g^{\prime}(\mathrm{Y}, \mathrm{X})$, for $\mathrm{X}, \mathrm{Y} \in \mathrm{V}_{\mathrm{C}}$

Conversely every GF-symmetric bilinear form g^{\prime} on V_{C} with properties a, b, c is a natural continuation of a B scalar product g on (V, J).

2. Generalised B-Manifold:

Let g be pseudo Riemannian metric on almost GF-Manifold (M, \mathfrak{J}). We shall call g as B-metric, if $g(J) X$, $\mathfrak{J} \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \mathrm{Y})$ for $\mathrm{X}, \mathrm{Y} \in \therefore(\mathrm{M})$. Evidently, a B-metric g on M defines a B-scalar product g_{p} in every tangent space $\mathrm{T}_{\mathrm{P}}(\mathrm{M}), p \in M$ with respect to the GF-structure $\mathfrak{J}_{\mathrm{p}}$ of $\mathrm{T}_{\mathrm{P}}(\mathrm{M})$ induced by the almost GFstructure \mathfrak{J} of M. We shall call every almost GF-manifold with a B-metric a generalized B-manifold and let us denote by GB the class of generalised B-manifolds.
Let $M \in G B$ and ∇ be the Levi-Civita connection generated by the metric g of M if $\nabla J=0$, then M is the known B-Manifold
It is known that every paracompact manifold admits a Riemannian metric. If h is a Riemannian metric on a paracompact almost GF-structure manifold (M, \mathfrak{J}), which is not a Hermitian one, then the metric g with a property $g(X, Y)=h(X, Y)-h(\Im X, \Im Y)$ for all $X, Y \in \therefore(M)$ is a B-metric.

Lemma 1: If $M \in G B$ and $X, Y, Z \in \therefore(M)$, then

$$
\begin{align*}
& g\left(\left(\nabla_{X} \mathfrak{J}\right) Y, Z\right)=g\left(\left(\nabla_{X} \mathfrak{J}\right) Z, Y\right) \tag{2.1}\\
& g\left(\left(\nabla_{X} \mathfrak{J}\right) Y, J Z\right)=-g\left(\left(\nabla_{X} \mathfrak{J}\right) Z, \mathfrak{J} Y\right) \tag{2.2}\\
& g\left(\left(\nabla_{X} \mathfrak{J}\right) \mathfrak{J} Y, \mathfrak{J} Z\right)=g\left(\left(\nabla_{X} \mathfrak{J}\right) Y, Z\right) \tag{2.3}
\end{align*}
$$

Where ∇ is the Levi-Civita connection generated by g .
Proof: Since $M \in G B$, so $Z g\left(\Im_{X}, Y\right)=Z g\left(X, \mathfrak{J}_{Y}\right)$ for all $X, Y, Z \in \therefore(M)$. Since ∇ is Levi-Civita connection, the last identity gives (2.1) and since M is an almost GF-manifold, it follows that

$$
\begin{equation*}
\left(\nabla_{X} \mathfrak{I}\right) \mathfrak{I} Y=-\mathfrak{I}\left(\nabla_{X} \mathfrak{I}\right) Y \tag{2.4}
\end{equation*}
$$

The identity (2.2) follows from (2.1) and (2.4). Also (2.3) follows from the condition that g is a B-metric and (2.4).

Now we define a tensorfield ϕ of type $(0,3)$ by the condition

$$
\begin{equation*}
\phi(X, Y, Z)=g\left(\left(\nabla_{X} \mathfrak{J}\right) Y, Z\right)+g\left(\left(\nabla_{Y} \mathfrak{J}\right) Z, X\right)+g\left(\left(\nabla_{Z} \mathfrak{J}\right) X, Y\right) \text { for } X, Y, Z \in \therefore(M) \tag{2.5}
\end{equation*}
$$

Because of (2.1) the tensorfield ϕ is symmetric with respect to any two arguments. By virtue of lemma (1) and relations (2.4) and (2.5), we state the following assertion.

Lemma 2: Let $M \in G B$ and N be the Nijenhuis tensor of \mathfrak{J}. Then for all $X, Y, Z \in \therefore(M)$ we have $2\left(g\left(X,\left(\nabla_{Z} \mathfrak{J}\right) Y\right)-\left(\nabla_{\mathfrak{J} Z} \mathfrak{J}\right)(Y)\right)=\phi(X, Y, Z)-\phi(X, \mathfrak{J} Y, \mathfrak{J} Z)-g(N(Y, Z), \mathfrak{J} X)$
Where
$N(Y, Z)=\left(\nabla_{\mathfrak{J} Y} \mathfrak{J}\right) Z-\left(\nabla_{\mathfrak{J} Z} \mathfrak{J}\right) Y-\mathfrak{J}\left(\nabla_{Y} \mathfrak{J}\right) Z+\mathfrak{J}\left(\nabla_{Z} \mathfrak{J}\right) Y$
For $M \in G B$, we shall call M a normal generalized B -manifold if $\mathrm{N}=0$ and let us denote the class of these manifolds by R^{GB}
Using lemma (1) and lemma (2), we can prove the following theorem
Theorem 4: If $M \in R^{G B}$, then $M \in B$ when $\phi=0$
Because of theorem (4), we have the following result.
Theorem 5: Let $M \in G B$ and $X, Y \in \therefore(M)$. Then the following assertions are equivalent:
(a) $M \in B$
(b) $\left(\nabla_{X} \mathfrak{I}\right) Y=\in\left(\nabla_{Y} \mathfrak{J}\right) X, \in= \pm 1$
(c) $\left(\nabla_{\mathfrak{J} X} \mathfrak{J}\right) Y=\lambda \Im\left(\nabla_{X} Y\right), \lambda \in M$
(d) $N_{1}(X, Y)=\left(\nabla_{\Im X} \mathfrak{J}\right) \mathfrak{J} Y-\left(\nabla_{\mathfrak{J}} Y \mathfrak{J}\right) \mathfrak{J} X+\left(\nabla_{X} \mathfrak{J}\right) Y-\left(\nabla_{Y} \mathfrak{J}\right) X=0$
(e) $Q_{1}(X, Y)=\left(\nabla_{\mathfrak{J} X} \mathfrak{J}\right) \mathfrak{J} Y+\left(\nabla_{\Im Y} \mathfrak{J}\right) \mathfrak{J} X+\left(\nabla_{X} \mathfrak{J}\right) Y+\left(\nabla_{Y} \mathfrak{J}\right) X=0$

Proof: Using lemma (1), after some calculations we find the identities.

$$
\begin{aligned}
& g\left(N_{1}(X, Y), \mathfrak{J} Z\right)+g\left(N_{1}(Y, Z), \mathfrak{J} X\right)-g\left(N_{1}(Z, X), \mathfrak{J} Y\right)=2\left(g\left(\left(\nabla_{\mathfrak{J} X} \mathfrak{J}\right) Z-\left(\nabla_{\mathfrak{J} Z} \mathfrak{J}\right) X, Y\right)-g\left(\left(\nabla_{Y} \mathfrak{J}\right) X, \mathfrak{J} Z\right)\right) \\
& g\left(Q_{1}(X, Y), \mathfrak{J} Z\right)+g\left(Q_{1}(Y, Z), \mathfrak{J} X\right)-g\left(Q_{1}(Z, X), \mathfrak{J Y) = 2 (g ((\nabla _ { \mathfrak { J } Y } \mathfrak { J }) \mathfrak { J } X + (\nabla _ { X } \mathfrak { J }) Y , \mathfrak { J } Z) - g ((\nabla _ { Z } \mathfrak { J }) X , \mathfrak { J } Y))}\right. \text {) }
\end{aligned}
$$

by means of these identities, lemma (1) and (2) we establish correctness of the theorem.

REFERENCES:

[1] Wolf - \mathfrak{I}. A. (1972): Spaces of constant curvature.University of California, Berkly California.
[2] Kobayashi S., Nonizu K. (1969) : Foundation of Differential Geometry. Vol II, Interscience Publishers, New Yark.
[3] Schouten, J. A. \& Yano, K. (1955) : On the geometric meaning of the vanishing of Nijenhuis tensor in on $\mathrm{X}_{2 \mathrm{n}}$ with on almost complex structure. Ind.17,pp 132-38.
[4] Duggal, K.L. (1971): On differentiable structures defined by algebraic equations II, F- Connections. Tensor, N.S., 22, pp. 255-2

