On Generalised B- Manifolds

S.K. Srivastava¹, Virendra Nath Pathak²

¹D.D.U. Gorakhpur University Gorakhpur, India. E-mail- sudhir66@rediffmail.com ²Shri Ramswaroop Memorial Group of Professional Colleges Lucknow, India. E-mail- pathak_virendra@rediffmail.com Moible No-91-9415063248

Abstract

GF- Structure Manifolds were defined and studied by Prof. Duggal, K.L, (1971), Prof. Mishra, R.S. (1974) and many other geometers.

In this paper, I have defined real vector space with GF- Structure and B-Scalar product and certain results have been proved. It has been proved that B-Scalar product admits an Orthonormal J-Base .Besides this certain results have also been proved. GF-Structure, Generalised B-manifold has also been studied and certain results on GF-Structure, Generalised B-manifolds, have also been obtained.

On Generalised B-Manifolds

In this paper, we have defined and studied generalised B-Manifolds. Certain interesting theorems have been proved. Some results on connections have also been obtained.

1. Real vector space with GF-structure and B-scalar product.

Let V be a 2n dimensional real vector space with GF-Structure $F^2 = a^2I$ where I is the identity of the vector space V. It is well known that a scalar product g on V is said to be Hermitian scalar product iff g(FX, FY) = g(X, Y) for all $X, Y \in V$.

Theorem 1: Let V be a 2n dimensional real vector space admitting GF-structure. If h is any GF-bilinear symmetric non degenerate form on V considered as an n dimensional GF-structure Manifold, then h is B-scalar product on the real vector space V.

Proof: Let us consider real vector space V with GF–structure J as an n dimensional complex vector space where aX = -JX for $X \in V$. Let h be a GF-bilinear symmetric non degenerate forms on the GF-structure Manifold V.

Putting h(X, Y) =g(X, Y) –aF(X, Y), for X, $Y \in V$, g and F are bilinear symmetric non degenerate forms on the vector space V. Thus we get

 $g(JX, JY) = a^2g(X,Y), F(JX, JY) = a^2F(X,Y)$ because of the symmetry of g and F.

Let (V, g, J) be a 2n dimensional vector space V, with a structure J and a B- scalar product g and U be a linear subspace of V. The space U is called non degenerate if the restriction of g on U is a non degenerate form on U. Then U is called degenerate (isotropic) space i.e. there exists a non zero vector $Z \in U^{\perp}$ orthogonal to $U : (U \cap U^{\perp} \neq \{0\})$. A vector subspace U is called a completely isotropic space, if every vector $Z \in U^{\perp}$ is null vector. The set of the null vectors in V is called isotropic cone. The space U is called holomorphic if JU=U. It is clear that the orthogonal complement U^{\perp} of U is also a holomorphic linear space. We shall call a base $\{X_1, X_2, ..., X_n; J_{X_1}, ..., J_{X_n}\}$ orthonormal J base if $g(X_i, J_{X_i}) = 0$ and $g(X_i, X_j) = \delta$ ij, where δ ij is Kroneker' s symbol. For this base we have $g(J_{X_i}, J_{X_i}) = -\delta_{ij}$.

Theorem 2: Any vector space with a GF-structure and a B-scalar product admits an orthonormal J- base.

Proof: Let (V, g, f) be a 2n dimensional real vector space with a GF-structure and a B-scalar product. Let α_1 CV be any linear non degenerate holomorphic two dimensional space (non degenerate holomorphic 2-plane) spanned by X, J_X where X is not a null vector. Let us denote by X the vector g(X,X)^{-1/2} X When g(X, X)>0 or g (J_X,J_X)^{-1/2} J_X, when g(X, X)<0. Considering vector X₁ such that $X_1 = \lambda X + \gamma J_X$, $g(X_1, X_1) = 1$

and $g(X_1, J_{X_1}) = 0$. Thus $\{X_1, J_{X_1}\}$ is a unique (in spite of orientation) orthonormal J – base of α_1 . Let $\alpha_i, i \in \{2, 3, ..., n\}$ be a non degenerate holomorphic 2 plane. Every 2-plane $\alpha_j, j \in \{1, 2, ..., n\}$ admits an orthonormal J base $\{X_J, J_{X_j}\}$. Therefore $\{X_1, X_2, ..., X_n, J_{X_1}, J_{X_2}, ..., J_{X_n}\}$ is an orthonormal J- base of V. Thus from the proof of the theorem (2) it is clear that (V, g, f) is a direct sum of n non- degenerate holomorphic 2 planes. On the other hand, (V, g, J) is a direct sum of two maximal completely isotropic n dimensional linear subspaces U and W. Really let $\{X_1, X_2, ..., X_n, J_{X_1}, J_{X_2}, ..., J_{X_n}\}$ be an orthonormal J-base of V. Then putting $f_i = J_{X_i} - X_i$, $e_i = J_{X_i} + X_i$ we get bases $\{f_1, f_2, ..., f_n\}$, $\{e_1, e_2, ..., e_n\}$ of U and W respectively. It is clear that $\{f_1, f_2, ..., f_n, e_1, e_2, ..., e_n\}$ is a base of V. we have $g(f_i, f_j)=g(e_i, e_j)=0$, $g(f_i, e_j)=-2\delta_{ij}$. A base like the last one is called skew base [1]. We note that according to theorem (2) the space (V, g, J) is a pseudo- Euclidean vector space with structure (n, n) because (V, g, J) is is sometric to the real co-ordinate 2n-dimensional vector space \mathbb{R}^{2n} with bilinear form

$$b_n(X,Y) = \sum (X_i Y_j - X_j Y_i)$$

Where $X = (X^1, X^2, ..., X^{2n}), \quad Y = (Y^1, Y^2, ..., Y^{2n})$ in \mathbb{R}^{2n} .

Let (V, J) be a vector space with a GF-structure and let $V_c = V \otimes R^{2n}$

We have $V_c = V^{1,0} + V^{0,1}$ where $V^{1,0} = \{X - aJ_X \mid X \in V\}$. We can verify directly the following theorem [2].

Theorem 3: A B-scalar product g on (V, J) can be continued uniquely to a GF-symmetric bilinear form g' on V_C such that

- (a) g'(X, Y) = 0 for $X \in V^{1,0}$ and $Y \in V^{0,1}$
- (b) $g'(X,X) \neq 0$ at least for some $X \in V_C$
- (c) g'(X,Y) = g'(Y,X), for $X, Y \in V_C$

Conversely every GF-symmetric bilinear form g' on V_c with properties a, b, c is a natural continuation of a B scalar product g on (V, J).

2. Generalised B-Manifold:

Let g be pseudo Riemannian metric on almost GF-Manifold (M, \Im). We shall call g as B-metric, if g($\Im X$, $\Im Y$) = -g(X, Y) for X, Y $\in :$ (M). Evidently, a B-metric g on M defines a B-scalar product g_p in every tangent space T_P (M), $p \in M$ with respect to the GF-structure \Im_p of T_P (M) induced by the almost GF-structure \Im of M. We shall call every almost GF-manifold with a B-metric a generalized B-manifold and let us denote by GB the class of generalised B-manifolds.

Let $M \in GB$ and ∇ be the Levi-Civita connection generated by the metric g of M if $\nabla J = 0$, then M is the known B-Manifold

It is known that every paracompact manifold admits a Riemannian metric. If h is a Riemannian metric on a paracompact almost GF-structure manifold (M, \mathfrak{I}) , which is not a Hermitian one, then the metric g with a property $g(X,Y) = h(X,Y) - h(\mathfrak{I}X,\mathfrak{I}Y)$ for all $X,Y \in :: (M)$ is a B-metric.

Lemma 1: If $M \in GB$ and $X, Y, Z \in :: (M)$, then

(2.1)
$$g((\nabla_X \mathfrak{I})Y, Z) = g((\nabla_X \mathfrak{I})Z, Y)$$

(2.2)
$$g((\nabla_X \mathfrak{I})Y, JZ) = -g((\nabla_X \mathfrak{I})Z, \mathfrak{I}Y)$$

(2.3) $g((\nabla_X \mathfrak{I})\mathfrak{I}Y, \mathfrak{I}Z) = g((\nabla_X \mathfrak{I})Y, Z)$

Where ∇ is the Levi-Civita connection generated by g.

Proof: Since $M \in GB$, so $Zg(\mathfrak{I}_X, Y) = Zg(X, \mathfrak{I}_Y)$ for all $X, Y, Z \in :.(M)$. Since ∇ is Levi-Civita connection, the last identity gives (2.1) and since M is an almost GF-manifold, it follows that

(2.4)
$$(\nabla_X \mathfrak{I})\mathfrak{I}Y = -\mathfrak{I}(\nabla_X \mathfrak{I})\mathfrak{I}Y$$

The identity (2.2) follows from (2.1) and (2.4). Also (2.3) follows from the condition that g is a B-metric and (2.4).

Now we define a tensorfield ϕ of type (0,3) by the condition

(2.5)
$$\phi(X,Y,Z) = g((\nabla_X \mathfrak{I})Y,Z) + g((\nabla_Y \mathfrak{I})Z,X) + g((\nabla_Z \mathfrak{I})X,Y) \text{ for } X,Y,Z \in :: (M)$$

Because of (2.1) the tensorfield ϕ is symmetric with respect to any two arguments. By virtue of lemma (1) and relations (2.4) and (2.5), we state the following assertion.

Lemma 2: Let $M \in GB$ and N be the Nijenhuis tensor of \mathfrak{I} . Then for all $X, Y, Z \in ...(M)$ we have $2(g(X, (\nabla_Z \mathfrak{I})Y) - (\nabla_{\mathfrak{I}Z} \mathfrak{I})(Y)) = \phi(X, Y, Z) - \phi(X, \mathfrak{I}Y, \mathfrak{I}Z) - g(N(Y, Z), \mathfrak{I}X)$ Where $N(Y, Z) = (\nabla_{\mathfrak{I}Y} \mathfrak{I})Z - (\nabla_{\mathfrak{I}Z} \mathfrak{I})Y - \mathfrak{I}(\nabla_Y \mathfrak{I})Z + \mathfrak{I}(\nabla_Z \mathfrak{I})Y$

For $M \in GB$, we shall call M a normal generalized B-manifold if N=0 and let us denote the class of these manifolds by \mathbb{R}^{GB}

Using lemma (1) and lemma (2), we can prove the following theorem

Theorem 4: If $M \in \mathbb{R}^{GB}$, then $M \in B$ when $\phi = 0$ Because of theorem (4), we have the following result.

Theorem 5: Let $M \in GB$ and $X, Y \in ... (M)$. Then the following assertions are equivalent:

- (a) $M \in B$
- (b) $(\nabla_X \mathfrak{I})Y = \in (\nabla_Y \mathfrak{I})X, \in = \pm 1$
- (c) $(\nabla_{\Im X} \Im) Y = \lambda \Im (\nabla_X Y), \lambda \in M$
- (d) $N_1(X,Y) = (\nabla_{\Im X} \Im)\Im Y (\nabla_{\Im}Y\Im)\Im X + (\nabla_X \Im)Y (\nabla_Y \Im)X = 0$
- (e) $Q_1(X,Y) = (\nabla_{\mathfrak{I}X}\mathfrak{I})\mathfrak{I}Y + (\nabla_{\mathfrak{I}Y}\mathfrak{I})\mathfrak{I}X + (\nabla_X\mathfrak{I})Y + (\nabla_Y\mathfrak{I})X = 0$

Proof: Using lemma (1), after some calculations we find the identities.

$$g(N_1(X,Y),\Im Z) + g(N_1(Y,Z),\Im X) - g(N_1(Z,X),\Im Y) = 2(g((\nabla_{\Im X}\Im)Z - (\nabla_{\Im Z}\Im)X,Y) - g((\nabla_Y\Im)X,\Im Z))$$
$$g(Q_1(X,Y),\Im Z) + g(Q_1(Y,Z),\Im X) - g(Q_1(Z,X),\Im Y) = 2(g((\nabla_{\Im Y}\Im)\Im X + (\nabla_X\Im)Y,\Im Z) - g((\nabla_Z\Im)X,\Im Y))$$

by means of these identities, lemma (1) and (2) we establish correctness of the theorem.

REFERENCES:

- [1] Wolf **3**.*A*. (1972): Spaces of constant curvature. University of California, Berkly California.
- [2] Kobayashi S., Nonizu K. (1969) : Foundation of Differential Geometry. Vol II, Interscience Publishers, New Yark.
- [3] Schouten, J. A. & Yano, K. (1955) : On the geometric meaning of the vanishing of Nijenhuis tensor in on X_{2n} with on almost complex structure. Ind.17,pp 132-38.
- [4] Duggal, K.L. (1971): On differentiable structures defined by algebraic equations II, F- Connections. Tensor, N.S., 22, pp. 255-2