
The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand 
 

 

On Generalised  B- Manifolds 
 

S.K. Srivastava
1
, Virendra Nath Pathak

2
  

 
1D.D.U. Gorakhpur University Gorakhpur, India. 

E-mail- sudhir66@rediffmail.com 
2Shri Ramswaroop Memorial Group of Professional Colleges Lucknow, India. 

E-mail- pathak_virendra@rediffmail.com  Moible No-91-9415063248 

 

 

Abstract 

GF- Structure Manifolds were defined and studied by Prof. Duggal, K.L, (1971), Prof. Mishra, R.S. (1974) and 

many other geometers. 

            In this paper, I have defined real vector space with GF- Structure and B-Scalar product and certain 

results have been proved. It has been proved that B-Scalar product admits an Orthonormal J-Base .Besides this 

certain results have also been proved. GF-Structure, Generalised B-manifold has also been studied and certain 

results on GF-Structure, Generalised B-manifolds, have also been established. Some results on Connections 

have also been obtained. 

 

On Generalised B-Manifolds 

 

In this paper, we have defined and studied generalised B-Manifolds. Certain interesting theorems have 

been proved. Some results on connections have also been obtained. 

 

1. Real vector space with GF-structure and B-scalar product. 

 

Let V be a 2n dimensional real vector space with GF-Structure F
2
 =a

2
I where I is the identity of the vector space 

V. It is well known that a scalar product g on V is said to be Hermitian scalar product iff      g (FX, FY) =g(X, 

Y) for all X, VY  . 

 

Theorem 1: Let V be a 2n dimensional real vector space admitting GF–structure. If h is any GF-bilinear 

symmetric non degenerate form on V considered as an n dimensional GF-structure Manifold, then h is B-scalar 

product on the real vector space V. 

 

Proof: Let us consider real vector space V with GF–structure J as an n dimensional complex vector space where 

aX = -JX for VX  . Let h be a GF-bilinear symmetric non degenerate forms on the GF-structure Manifold V. 

Putting h(X, Y) =g(X, Y) –aF(X, Y), for X, VY  , g and F are bilinear symmetric non degenerate forms on the 

vector space V. Thus we get 

g(JX, JY) = a
2
g(X,Y), F(JX, JY)= a

2
F(X,Y) because of the symmetry of g and F. 

Let (V, g, J) be a 2n dimensional vector space V, with a structure J and a B- scalar product g and U be a linear 

subspace of V. The space U is called non degenerate if the restriction of g on U is a non degenerate form on U. 

Then U is called degenerate (isotropic) space i.e. there exists a non zero vector ZU┴ orthogonal to 

})0{(:  UUU .A vector subspace U is called a completely isotropic space, if every vector  ZU┴ is 

null vector. The set of the null vectors in V is called isotropic cone. The space U is called holomorphic if JU=U. 

It is clear that the orthogonal complement U┴ of U is also a holomorphic linear space .We shall call a base {X1, 

X2,…, Xn; 
1XJ , …,

nXJ  } orthonormal  J base if    0, 
iXi JXg  and g(Xi, Xj) = ij, where ij is Kroneker’ 

s symbol. For this base we have   ijXX ji
JJg , .  

 

Theorem 2:  Any vector space with a GF-structure and a B-scalar product admits an orthonormal J- base. 

 

Proof:  Let (V, g, f) be a 2n dimensional real vector space with a GF-structure and a B-scalar product. Let α1CV 

be any linear non degenerate holomorphic two dimensional space (non degenerate holomorphic 2-plane) 

spanned by X, JX where X is not a null vector. Let us denote by X the vector g(X,X)
- 2/1

X When g(X, X)>0 or 

g (JX,JX)
- 2/1

JX ,  when g(X, X)<0. Considering vector X1 such that 1),(, 111  XXgJXX X  
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and 0),(
11 XJXg . Thus },{

11 XJX is a unique (in spite of orientation) orthonormal J – base of α1. Let 

},...,3,2{, nii   be a non degenerate holomorphic 2 plane. Every 2-plane },...,2,1{, njj  admits an 

orthonormal J base },{
jXJ JX . Therefore },...,,,,...,,{

2121 nXXXn JJJXXX  is an orthonormal J- base of V. 

Thus from the proof of the theorem (2) it is clear that (V, g, f) is a direct sum of n non- degenerate holomorphic 

2 planes. On the other hand, (V, g, J) is a direct sum of two maximal completely isotropic n dimensional linear 

subspaces U and W. Really let },...,,,,...,,{
2121 nXXXn JJJXXX be an orthonormal J-base of V. Then 

putting fi= iX XJ
i
 , iXi XJe

i
  we get bases {f1, f2, ..., fn}, {e1, e2, …, en} of  U and W respectively. It is 

clear that {f1, f2, ..., fn, e1, e2, …, en} is a base of V. we have  g(fi , fj)=g(ei , ej)=0, g(fi , ej)= -2δij. A base like the 

last one is called skew base [1]. 

We note that according to theorem (2) the space ( V, g, J ) is a pseudo- Euclidean vector space with structure (n, 

n )because (V, g, J) is isometric to the real co-ordinate 2n-dimensional vector space R
2n

 with bilinear form 

bn(X,Y)=∑(XiYj - XjYi) 

Where  X=(X
1
, X

2
,…,X

2n
),    Y=(Y

1
, Y

2
,…,Y

2n
) in R

2n
. 

Let (V, J) be a vector space with a GF-structure and let 
n

c RVV 2  

We have 
1,00,1 VVVc   where  VXaJXV X  /0,1

. We can verify directly the following theorem 

[2]. 

 

Theorem 3:  A B-scalar product g on (V, J) can be continued uniquely to a GF-symmetric bilinear form g  on 

VC  such that  

(a) g  (X, Y) =0 for X V
1,0 

 and Y   V
0,1

 

(b) g  (X,X) ≠ 0 at least for some X   VC 

(c) g  (X,Y) = g  (Y,X), for X, YVC 

Conversely every GF-symmetric bilinear form g on VC with properties a, b, c is a natural continuation of a B 

scalar product g on (V, J). 

 

2. Generalised B-Manifold: 

 

Let g be pseudo Riemannian metric on almost GF-Manifold (M, ). We shall call g as B-metric, if g(X, 

Y) = -g(X, Y) for X, Y  (M). Evidently, a B-metric g on M defines a B-scalar product gp in every 

tangent space TP (M), Mp  with respect to the GF-structure  p of TP (M) induced by the almost GF-

structure   of M. We shall call every almost GF-manifold with a B-metric a generalized B-manifold and let us 

denote by GB the class of generalised B-manifolds. 

Let GBM  and   be the Levi-Civita connection generated by the metric g of M if  0J , then M is the 

known B-Manifold 

It is known that every paracompact manifold admits a Riemannian metric. If h is a Riemannian metric on a 

paracompact almost GF-structure manifold  ,M , which is not a Hermitian one, then the metric g with a 

property      YXhYXhYXg  ,,,  for all  MYX , is a B-metric. 

 

Lemma 1: If GBM   and  MZYX ,, , then 

(2.1)      YZgZYg XX ,,   

(2.2)      YZgJZYg XX  ,,  

(2.3)      ZYgZYg XX ,,   

Where  is the Levi-Civita connection generated by g. 

 

Proof: Since GBM  , so    YX XZgYZg  ,, for all  MZYX ,, . Since   is Levi-Civita 

connection, the last identity gives (2.1) and since M is an almost GF-manifold, it follows that 

 

(2.4)     YY XX   
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The identity (2.2) follows from (2.1) and (2.4). Also (2.3) follows from the condition that g is a B-metric and 

(2.4). 

Now we define a tensorfield  of type (0,3) by the condition 

 

(2.5)           YXgXZgZYgZYX ZYX ,,,,,   for  MZYX ,,  

 

Because of (2.1) the tensorfield   is symmetric with respect to any two arguments. By virtue of lemma (1) and 

relations (2.4) and (2.5), we state the following assertion. 

 

Lemma 2: Let GBM   and N be the Nijenhuis tensor of . Then for all  MZYX ,,  we have 

             XZYNgZYXZYXYYXg ZZ   ,,,,,,,2   

Where 

         YZYZZYN ZYZY  ,  

For GBM  , we shall call M a normal generalized B-manifold if N=0 and let us denote the class of these 

manifolds by R
GB

 

Using lemma (1) and lemma (2), we can prove the following theorem 

 

Theorem 4: If
GBRM  , then BM   when 0  

         Because of theorem (4), we have the following result. 

 

Theorem 5: Let GBM   and  MYX , . Then the following assertions are equivalent: 

(a) BM   

(b)     1,  XY YX  

(c)     MYY XX   ,  

(d)           0,1   XYXYYYXN YXX  

(e)           0,1   XYXYYXQ YXYX  

 

Proof: Using lemma (1), after some calculations we find the identities. 

 

                 ZXgYXZgYXZNgXZYNgZYXNg YZX   ,,2,,,,,, 111

 

                 YXgZYXgYXZQgXZYQgZYXQg ZXY   ,,2,,,,,, 111

 

 

by means of these identities, lemma (1) and (2) we establish correctness of the theorem. 
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