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Abstract
GF- Structure Manifolds were defined and studied by Prof. Duggal, K.L, (1971), Prof. Mishra, R.S. (1974) and
many other geometers.

In this paper, | have defined real vector space with GF- Structure and B-Scalar product and certain
results have been proved. It has been proved that B-Scalar product admits an Orthonormal J-Base .Besides this
certain results have also been proved. GF-Structure, Generalised B-manifold has also been studied and certain
results on GF-Structure, Generalised B-manifolds, have also been established. Some results on Connections
have also been obtained.

On Generalised B-Manifolds

In this paper, we have defined and studied generalised B-Manifolds. Certain interesting theorems have
been proved. Some results on connections have also been obtained.

1. Real vector space with GF-structure and B-scalar product.

Let V be a 2n dimensional real vector space with GF-Structure F? =a’l where | is the identity of the vector space
V. It is well known that a scalar product g on V is said to be Hermitian scalar product iff g (FX, FY) =g(X,

Y)forall X,Y €V .

Theorem 1: Let V be a 2n dimensional real vector space admitting GF-structure. If h is any GF-bilinear
symmetric non degenerate form on V considered as an n dimensional GF-structure Manifold, then h is B-scalar
product on the real vector space V.

Proof: Let us consider real vector space V with GF—structure J as an n dimensional complex vector space where
aX =-JX for X €V . Let h be a GF-bilinear symmetric non degenerate forms on the GF-structure Manifold V.
Putting h(X, Y) =g(X, Y) —aF(X, Y), for X,Y €V , g and F are bilinear symmetric non degenerate forms on the
vector space V. Thus we get

g(IX, JY) = a%g(X,Y), F(IX, JY)= a’F(X,Y) because of the symmetry of g and F.

Let (V, g, J) be a 2n dimensional vector space V, with a structure J and a B- scalar product g and U be a linear
subspace of V. The space U is called non degenerate if the restriction of g on U is a non degenerate form on U.
Then U is called degenerate (isotropic) space i.e. there exists a non zero vector Z € UL orthogonal to
U : (U nU™" #{0}) .A vector subspace U is called a completely isotropic space, if every vector Z € UL is
null vector. The set of the null vectors in V is called isotropic cone. The space U is called holomorphic if JU=U.
It is clear that the orthogonal complement U-L of U is also a holomorphic linear space .We shall call a base {Xj,

Xayos Xny Iy s s I }orthonormal J base if g(Xi,in ): 0 and g(X;, X;) =0 ij, where J ij is Kroneker’

s symbol. For this base we have G(in ,ij ): =3

Theorem 2: Any vector space with a GF-structure and a B-scalar product admits an orthonormal J- base.

Proof: Let (V, g, f) be a 2n dimensional real vector space with a GF-structure and a B-scalar product. Let 0,CV
be any linear non degenerate holomorphic two dimensional space (non degenerate holomorphic 2-plane)

spanned b{ X, Jx where X is not a null vector. Let us denote by X the vector g(X,X) X When g(X, X)>0 or
g (Oxdx) /2Jx when g(X, X)<0. Considering vector X; such that X, =AX +d,,9(X;,X,)=1
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and §(X;,Jy ) =0. Thus {X,,Jy }is a unique (in spite of orientation) orthonormal J — base of a,. Let
a;,1€{2,3,...,n} be a non degenerate holomorphic 2 plane. Every 2-plane a;, j €{1,2,...,n}admits an
orthonormal J base{ X ;, ij }. Therefore {X,, X,,..., X, ‘]xl , sz yeens an} is an orthonormal J- base of V.

Thus from the proof of the theorem (2) it is clear that (V, g, f) is a direct sum of n non- degenerate holomorphic
2 planes. On the other hand, (V, g, J) is a direct sum of two maximal completely isotropic n dimensional linear

subspaces U and W. Really let {Xl,Xz,...,Xn,JXI,JXZ,...,JXn}be an orthonormal J-base of V. Then
putting f;= in - X, 6= in + X, we get bases {f;, f,, ..., f.}, {e1, €2, ..., en} of U and W respectively. It is

clear that {fy, f5, ..., fn, €1, €, ..., en} is a base of V. we have g(fi, fj)=g(ei , &)=0, 9(f; , €;)= -25;;. A base like the
last one is called skew base [1].
We note that according to theorem (2) the space ( V, g, J ) is a pseudo- Euclidean vector space with structure (n,
n )because (V, g, J) is isometric to the real co-ordinate 2n-dimensional vector space R** with bilinear form
b(X,Y)=2(XiY - X;Y)

Where X=(X', X2,...X*), Y=(Y!, Y4...Y")inR™

Let (V, J) be a vector space with a GF-structure and let V, =V & R*"
We have V, =V +V o where V*° = {X —al, /X eV}. We can verify directly the following theorem
[2].

Theorem 3: A B-scalar product g on (V, J) can be continued uniquely to a GF-symmetric bilinear form g" on
V¢ such that
(@ g (X, Y)=0forX eV*®andY e V**

(b) 9" (X,X) #0 at least for some X € V¢

© 9" (XY)= 9" (Y.X),forX,YeVc
Conversely every GF-symmetric bilinear form g’ on V¢ with properties a, b, ¢ is a natural continuation of a B
scalar product g on (V, J).

2. Generalised B-Manifold:

Let g be pseudo Riemannian metric on almost GF-Manifold (M, 3 ). We shall call g as B-metric, if g( 3 X,
JY) = -g(X, Y) for X, Y € .. (M). Evidently, a B-metric g on M defines a B-scalar product g, in every
tangent space Tp (M), P € M with respect to the GF-structure 3 p Of Tp (M) induced by the almost GF-

structure 3 of M. We shall call every almost GF-manifold with a B-metric a generalized B-manifold and let us
denote by GB the class of generalised B-manifolds.

Let M e GBand V be the Levi-Civita connection generated by the metric g of M if VJ =0, then M is the
known B-Manifold
It is known that every paracompact manifold admits a Riemannian metric. If h is a Riemannian metric on a

paracompact almost GF-structure manifold (M S) which is not a Hermitian one, then the metric g with a
property g(X,Y)=h(X,Y)—h(3X,3Y) forall X,Y €.".(M )is a B-metric.

Lemmal:If M eGB and X,Y,Z .. (M) then
@) 9(Vy3I)N.Z)=9((V(I)Z.Y)

22 9((V,3I),3Z)=-9((V,3)Z,3Y)
@3 9((Vx3)3Y,32)=9g((V(3I).2)
Where V is the Levi-Civita connection generated by g.

Proof: SinceM €GB, so Zg(J,,Y)=2g(X,3, )for all X,Y,Z €..(M). since V is Levi-Civita
connection, the last identity gives (2.1) and since M is an almost GF-manifold, it follows that

24)  (V,3I)3Y =-3(V,3)Y
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The identity (2.2) follows from (2.1) and (2.4). Also (2.3) follows from the condition that g is a B-metric and
(2.4).
Now we define a tensorfield ¢ of type (0,3) by the condition

@25  #(X,Y,Z2)=9((V,3)V,Z)+9((V,3)Z,X)+g(V,I)X,Y) for X,Y,Ze..(M)

Because of (2.1) the tensorfield ¢ is symmetric with respect to any two arguments. By virtue of lemma (1) and
relations (2.4) and (2.5), we state the following assertion.

Lemma 2: Let M € GB and N be the Nijenhuis tensor of 3 . Then for all X,Y,Z €.". (M) we have

2(g(X, (V23N )= (V23N )) = 4(X.Y, Z) - ¢(X, 3Y,32) - g(N(¥,2), 5X)
Where
N(Y’Z): (VSY S)Z _(VSZS)Y _S(VY S)Z +S(VZS)Y

For M € GB, we shall call M a normal generalized B-manifold if N=0 and let us denote the class of these
manifolds by R®®
Using lemma (1) and lemma (2), we can prove the following theorem

Theorem 4: If M € R®®  then M € B when ¢ =0
Because of theorem (4), we have the following result.

Theorem5: Let M € GB and X,Y e.-. (M ) Then the following assertions are equivalent:
@ MeB
(b) (V43I =e(V,3)X,e=+1
©) (Vi3I =A3(V,Y)1eM
(d) N,(X,Y)= (Vi I)IY —(VYI)IX +(V, I) = (V,I)X =0
@) Q(X,Y)=(Viy I)IY +(V4 I)IX +(V I +(V,3)X =0

Proof: Using lemma (1), after some calculations we find the identities.
g(Nl(X Y )’ SZ)"' g(Nl(Y ) Z)1 3X )_ g(Nl(Z’ X )’ 3Y ) 3 2(9((V3x3)z - (VSZS)X Y )_ g((VYS)X J SZ))

9(Q(X.¥)52)+9(Q(¥,2) 3X)-9(Qi(Z, X),3Y)=29((V+ I)3X +(Vx 3N, 52)-9((V, I)X,3Y))

by means of these identities, lemma (1) and (2) we establish correctness of the theorem.
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