AN INTERACTIVE DEBUGGING TOOL FOR C++
BASED ON DYNAMIC SLICING AND DICING
PART II: IMPLEMENTATION, TESTING, AND EVALUATION

Winai Wichaipanitch' and M. H. Samadzadeh

1. Introduction

C++Debug is an interactive debugging tool
designed to function as a utility program of the UNIX
system. C++Debug was developed based on slicing
and dicing techniques. In order for C++Debug to
be more powerful, dynamic slicing rather than static

slicing was chosen for implementation. C++Debug
was designed in a way to allow ease and convenience
on the part of the user. Using C++Debug, the user
can interact directly with the computer in locating
errors in a program. Menus are provided to allow
the user to select any one of a number of functions
(Slice, Dice, Help, etc.) supported by C++Debug.

To produce the C++Debug tool, three activities
of a software process are introduced: software
specification, software development, and software
validation. Some parts of the waterfall approach
are used to take those three activities and represent
them as separate process phases: requirements
specifications, software design, implementation,
testing, and valuation. In order to make C++Debug
a good piece of software, essential attributes such
as maintainability, dependability, efficiency, and
usability were considered.

2. Implementation and Results

2.1. Implementation

2.1.1. C++Debug Block Diagram. C++Debug is
comprised of four parts: Cpptrace, Database, Slicer,

and Dicer (as shown in Figure 1).

1. Cpptrace was designed as a tool allowing
one to follow the execution of a C++ program,
statement-by-statement. Cpptrace reads the C++

source program in a file, inserts statements to print

! Oklahoma State University Computer Science Department 219 MSCS Stillwater, OK 74078 samad@a.cs.okstate.edu
On leave from Computer Engineering Department, Faculty of Engineering,
Rajamangala Institute of Technology, Klong 6, Pathumthani, Thailand.

SANSIAINSSUMARS swsuopa 77

the text of each executable statement and the values
of all variables referenced or modified, and writes
the modified program to generate two major parts:
(1) a trajectory of the program and (2) some
databases, where a trajectory is a feasible path that
has actually been executed for some input and the
databases are a list of reserved words, a list of basic
types, identifier information, types, symbol tables,
and scope of influence. flex and bison are tools
used to implement Cpptrace. flex reads a specifica
tion file containing regular expressions for pattern
matching and generates a C or C++ routine that

performs lexical analysis [3]. This routine reads a

identify tokens. Bison reads a specification file that
codifies the grammar of a language and generates a
parsing routine [1]. This routine groups tokens into
meaningful sequences and invokes action routines
to act upon them. C++ grammar from Stroustrup’s
textbook was used in this implementation [8].

2. Database stores ordered sets of data such
as a list of reserved words, a list of basic types,
identifier information, types, symbol tables, and
scope of influence, etc. All data are created by
Cpptrace as a database. The D and U ordered sets
of data are computed from the trajectory path. This
database is used by Slicer to compute a program

stream of characters and matches sequences that slice(s).
" C++ Source a target language
Program specific component
C++Debug
Trajectory Path
List of List of Identifiers Database
Reserved Words Basic Types Inf
Dand U
Types Symbol Table Scope of Influence Sets
Compute Slicer Dicer
T Y X
Slicing Program Program Program Hicisbos
Criterion Slice #1 | | Slice #2 Slice #n Program
Segment

Fig 1. Block diagram of C++Debug

78 D1saA1SIADNSSUANERS S1sUVAA

3. Slicer was created to obtain a new program
of generally smaller size that still maintains all
aspects of the original program’s behavior with
respect to the criterion variable. The number of
program slices is dependent on the slicing criterion.

4. Dicer can then be used to compare two or

more slices resulting from the program slicing

key is two functions: enterscope() and exitscope
(). Function enterscope () makes the table point
to a new scope whose parent is the scope it pointed
to previously, while function exitscope() makes

the table point to the parent scope.

3. Limitation

C++Debug has some limitations as listed

technique in order to identify the set of statements bellow.
that are likely to contain an error. 1. Limitation of OS:UNIX
2.1.2. Datastructures. The datastructures of a source 2. Limitation of language: GNU G++
program, functions, a trajectory, sets such as D,U 3. Limitations of algorithm: worst-case
DU, DCL, etc. were implemented based on data O(NZV), average-case O(N log N),
structures shown in Figure 2. best-case O(N), where N is the #LOC
2.1.3. Symbol Tables. Symbol tables were designed of the trajectory part, and V is the
by following the concepts of symbol tables that are maximum number of variables in each line
used in cool, the Classroom Object-Oriented in a debugged program.
Language [2]. coOl is a small language designed 4. In the current implementation, limitation
for use in an undergraduate compiler course project of #LOC of the executable part: 1,000.
at the University of California at Berkley [2]. The
Constants
MaxLine = Maximum linenumbers of a source code
MaxTraj = Maximum linenumber of a trajectory
VarLength = Maximum number of variables per instruction
N = Maximumnumber of slices
Types
X =1..MaxLine /! an instructionin a program
Action { //instruction X at position q
X :1..MaxLine
} q :1..MaxTraj
Variable = string /l variable name is a string of characters
SliceCriterion, LastDef{ /1 slicing criterion
q :1..MaxTraj // and last definition
} v : set[Variable] /i variable V at position q in a trajectory
Variables
P : set[X] // a source program
Fname : set[X] /f afunction
T - list[X] I/ atrajectory
TFname - list[X] // a functiontrajectory
MT : set[Action] // a set of Actionintrajectory T
MTFname : set[Action] //-a setof Actionin trajectory T
: SliceCriterion // a slice criterion
DFname : set[Variable] /1 definedvariables
UFname : set[Variable] // used variable
LFname : set[variable] Iocal var & pre declaration
DUFname : set[action] // Definition-Use-FunctionName-Relation
LDRFname :set[action] // Local-Declaration-FunctionName-Relation
TCFname setfaction] /I Test-Control-FunctionName-Relation
IRFname : set[action] // Identity-Relation-FunctinName
A - array[1..N] of set[Action]
S - array[1..N] of set[Action]
LD : LastDef I a set of last definition
LE : set[Action] // a set of test actions
Vs : set[X] // Variable-Scope
Cs :set[);{ /I Control-Scope
Slice - array[1..N] of set[X] // Slices
Dice s set[X] I/ afinal dice

Fig 2. Slicing data structures

NSANSIAINSSUANERS SwsuoAa 79

4. Result

Based on the results of the experimentation,
C++Debug could generate a new slicing program
that is of smaller size than the original source
program. The new slicing program still preserves
part of the program’s original behavior for a specific
input. In addition, C++Debug can be used as a tool
like ctrace under UNIX. C++Debug can work on
both C and C++.

By using the -g option, C++Debug supports
the generation of grammar derivation trees. A users
can study how the parser checks the syntax of a
program. By using the -i option, all information
about C++Debug can be displayed. One who is
interesting in the dynamic slicing area can use the
information provided by C++Debug, such as D, U,
DU, symbol tables, etc., to investigate the process

of slicing, dicing, or compiling in general.

5. Problems and Situations in C++ That
Were Taken into Account in the Design

There are eight major problems and situations
in C++ that were taken into account in the design of
C++Debug. They are discussed bellow.

1. Problems and situations with classes and
objects such as classes, structures, unions, anony
mous unions, friend functions, friend classes, inline
functions, defining inline functions within a class,
parameterized constructors, static class members,
static data members, static member functions, the
scope resolution operator, nested classes, local
classes, passing objects to functions, returning
objects, and object assignment.

2. Problems and situations with arrays,
pointers, references, and the dynamic allocation

operators such as arrays of objects, uninitialized

arrays, pointers to objects, type checking C++
pointers, the this pointer, pointers to derived types,
pointers to class members, reference parameters,
passing references to objects, returning references,
independent references, references to derived types,
restrictions to references, dynamic allocation
operators (i.e., the new operator in C++),
initializing allocated memory, allocating arrays,
allocating objects, the nothrow alternative, and the
placement forms of new and delete.

3. Problems and situations with function over
loading, copy constructors, and default arguments
such as function overloading, overloading constructor
functions, overloading a constructor to gain flexibi
lity, initialized and uninitialized objects, copy
constructors, finding the address of an overloaded
function, the overload anachronism, default
function arguments, default arguments vs.
overloading, using default arguments correctly, and
function overloading and ambiguity.

4. Problems and situations with operator
overloading such as operator overloading using a
friend function, using a friend to overload ++ or
-—, friend operator functions adding flexibility,
overloading new and delete, overloading new and
delete for arrays, overloading thenothrow version
of new and delete, overloading some special
operators, overloading [], overloading (), overload
ing =2, and overloading the comma operator.

5. Problems and situations with inheritance
such as base-class access control, inheritance and
protected members, protected base-class inheritance,
inheriting multiple base classes, constructors,
destructors, inheritance, passing parameters to base—
class constructors, granting access, and virtual base

classes.

80 "isasHAINSSUAERS S1UVAA

6. Problems and situations with virtual
functions and polymorphism such as virtual
functions, calling a virtual function through a base
class reference, the inherited virtual attribute,
hierarchical virtual functions, pure virtual functions
abstract classes, and late binding.

7. Problems and situations with templates
such as generic functions, a function with two generic
types, explicitly overloading a generic function,
overloading a function template, using standard
parameters with template functions, generic function
restrictions, applying generic functions, a generic
sort, compacting an array, generic classes, a generic
array class, using non-type arguments with generic
classes, using default arguments with template
classes, explicit class specializations, and the
typename and export keywords.

8. Problems and situations with exception
handling such as exception handling
fundamentals, catching class types, using multiple
catch statements, handling derived-class
exceptions, exception handling captions, catching
all exceptions, restricting exceptions, rethrowing an
exception, terminate() and unexpected (), the
uncaught_exception() function, and the

exception and bad_exception classes.

6. Testing

Testing is the primary means for showing that
the implementation has the requisite functionality
and satisfies other non-functional properties [7].
Testing and other forms of verification and validation
are important at all stages of the software develop-
ment process. A number of standard testing techni-
ques were used to test C++Debug. These techniques

include random testing, assertion testing, grammar-

based testing, functional testing, black and white
box testing, requirements analysis testing, and

integration testing.

7. Evaluation

This section defines the evaluation approach
adopted for C++Debug. The evaluation procedure
is explained along with the details of the experimental

design and the results obtained.

7.1. Introduction

C++Debug was evaluated based on Lyle
[5] [6] and Gallagher’s [4]approach by training
several Computer Sciences graduate students at
Oklahoma State University in its operation and by
collecting data on how the students used C++Debug
to locate faults in C++ programs. The main objective
of the evaluation was how can C++Debug be used

to enhance the debugging process and localize errors.

7.2. Evaluation Procedure

The debugging process was studied by allow-
ing each student to debug one program with and
without C++Debug. There were four steps as listed
below.

7.2.1. Step I Familiarization. Let each student
answer a questionnaire covering background
information (see Subsection E.3.2.4), read an
overview of the evaluation, and finally read the
manual on how to use C++Debug.

7.2.2. Step II: First Treatment. Let each
student debug C++ programs without using the
C++Debug tool. Each student can use other tools
such as DBX, GDB, etc.

7.2.3. Step III: Second Treatment. In this
step, the C++ programs in step II were debugged

by using the C++Debug tool.

L3

nsasAnssuAmdns swsuopa 81

7.2.4. Step IV: Subject Remarks. All infor-
mation from Step I, Step II, and Step III were
collected and analyzed based on Lyle’s [6] approach
to find out:

1. Is C++Debug useful?

2. Are there some negative and positive

comments?

3. What do they like about C++Debug?

4. What don’t they like about C++Debug?

The students involved in the evaluation of
C++Debug were asked to fill out a questionnaire

based on Lyle’s [6] approach as follows.

Questionnaire

(1) How long have you been programming
(Years/Months)?

(2) How many CS, (Computer Science),
classes in your BS/BA?

(3) How many CS classes taken so far in
grad school?

(4) How many other CS classes have you
taken?

(5) Which programming languages are you
familiar with? Familiar means you used
the language for at least a semester’s work.

(6) On a scale from 0 to 10, how familiar

are you with C++7%

where
0 = D’ve never used C++
2 = Iknow some C++
5 = Iknow C++ about average
7 = I am comfortable with C++

10 = I know C++ well

0 2 4 6 8 10

T e STt R

(put a check mark on the scale)

(7) On the same scale from O to 10, how
familiar are you with the VI or EMACS

text editor?

0 2 4 6 8 10

+ + T + + e + + + & 1
"> + + + + by + i + + +

(put a check mark on the scale)
(8) Do you know about program slicing?

The subjects involved in the evaluation of
C++Debug were ten graduate students at the
Computer Science Department of Oklahoma State
University. The student responses to the questions
are summarized in Table I and II. The number of
changes made to the tested programs by each student,
and the number of slices each student computed are
shown in Table III. And finally, edit times, compile
times, and execution times are presented in Tables

IV and V.

Q%

N

time_programming | 10 8.1 30| 30 | 130 8.5
n_bs_classes oy 74 58 | 00 | 150 85
n_ms_classes 10 10.2 25 | 6.0 | 150 9.5
n_other_classes 10 16 18 | 0.0 40 1.0
n_languages 10 79 22 | 40 | 120 8.0
skill_C++ 10 71 25| 20 | 100 8.0
skill_vi_or_emacs 10 7.8 29 | 1.0 | 100 9.0

7.3. Comments on C++Debug

Seven of the ten subjects reported that in
the slicing mode C++Debug was very useful. In
the dicing mode, four subjects reported that C++
Debug can help them to locate errors in a program.
Five subjects felt surprised that C++Debug could
eliminate irrelevant statements. Three subjects said
that in the -t mode the trajectory path generated by
C++Debug worked like the cpptrace tool in C, in

an effective and useful manner.

82 Jsa1SHANSSUAERS S1UVAA

On the negative side, one subject felt that C++
Debug was not more powerful than other debugging
tools like GDB. Two subjects mentioned that the
dicing process is quite complicated because of the
process of selecting the appropriate slicing criteria
(variables and positions for dicing). One subject
mentioned that in the -g mode, C++Debug generated
derivation tree that were too long, and that it was

difficult to understand all of them.

Assembler
Cc

C++

Java

Lisp

Pascal

i

© 0 N O O b ODN -
*
W ON W WN W W N

-
o
*

* not slicing

Edit user time 10 | 832 (397 | 352 | 1177 | 782
Edit system time 10 | 437 | 184 | 194 | 486 412
Compile user time 10 | 15490 (2822|11882| 16957 | 14510
Compile system time | 10 | 4664 | 842 | 3872 | 5543 | 4602
Execute user time 10 | 580 (223 | 391 | 774 460
Execute system time | 10 | 845 | 212 | 618 | 1021 | 757

Edit user time 10| 1224 [1012 371 | 2501 902
Edit system time 10| 713 | 633 | 286 | 1522 41
Compile user time 10| 12501 | 492 | 11903 | 12833 | 12532
Compile system time | 10| 3962 | 557 | 3255 | 4482 | 3921
Execute user time 10| 588 | 113 | 464 621 521
Execute system time [10| 730 | 248 | 492 919 627

8. Conclusions and Future Work

8.1. Conclusions

C++Debug was designed to allow ease and
convenience on the part of the user. Using C++
Debug, a user can interact directly with the computer in
locating errors in a certain program. For convenience,
the program provides menus to allow the user
to select any one of the functions contained therein.
Based on the results of the experimentation, C++
Debug could generate a new slicing program that is
of smaller size than the original source program.
The new slicing program still preserves part of the
program’s original behavior for a specific input. In
addition, C++Debug can be used as a tool like
ctrace under UNIX [9]. C++Debug can work on
both C and C++.

8.2. Future Work

Based on the initial experiments with
C++Debug, we found that improvements and
additions can be made to C++Debug in the following
aspects.

8.2.1. Improvements. The size of C++Debug
after compiling by an optimized compiler is
2,088,720 bytes. It appears that it should be
smaller if some algorithms and memory uses are
managed better. Time and space complexities are
dependent on the size of the trajectory (and not

necessarily the size of the source code). To avoid

NSASIAINSSUAEAAS ssuopa 83

running out of disk space (which is needed to store
the trajectory path), the user must know how far
the trajectory must go and how much disks space is
required. It would be better if C++Debug can
automatically check and tell the user about the
sufficiency of the disk space. And it should also
estimate the time that C++Debug is going to take to
obtain the slices and the dices.

8.2.2. Additions. Instead of just menus, some
windows should be supported so that a user can
view the source code, the trajectory path, the program
slice, etc. on the screen. Using a mouse can help a
user probably better than using the keyboard in
selecting which function to use, or selecting the
variables and positions required to compute a slice.

8.2.3. Future Work. For a tested C++ program
that has pointers, global variables, and static
declarations in classes, the algorithm that was used
to implement C++Debug yields an output slice larger
than it should be (however, it still gives the correct
output and its size is smaller than the original source
program). Some lines that should be eliminated are
not eliminated. If a better algorithm to manage
pointers, global variables, and static declarations in
classes is implemented, the size of the resulting slice
will be smaller.

It will be desirable if C++Debug can be made
a multi-user-tool. However, in the current implemen
tation, since C++Debug saves specific files in a
local directory, it cannot be used in the multi-user
mode.

Because of the complexities of the C++ symbol
table and the time constraint, the current version of
C++Debug cannot treat array elements and fields in

dynamic records as individual variables.

9. References

[1] “Bison 1.35 Manual,” http://www.gnu.org/
manual/ bison-1.35/html_mono/ bison.html.gz,
Last Update: March 2000, Last Access: April 30,
2003.

[2] “CoolAid: The Cool Reference Manual,”
http://www.cs. berkeley.edu/~aiken/ftp/cool-
manual.ps, Last Update: January 1994, Last Access:
April 30, 2003.

[8] “Flex, version 2.5 A Fast Scanner Generator
Edition 2.5, March 1995,” http://www.gnu.org/
manual/flex2.5.4 /html_mono/ flex.html, Last
Update: February 23, 2001, Last Access: April
30, 2003.

[4] Keith Brian Gallagher, Using Program Slicing
in Software Maintenance, Ph.D. Dissertation,
Computer Science Department, University of
Maryland, Baltimore County, MD, 1990.

[5] Keith B. Gallagher and James R. Lyle, “Using
Program Slicing in Software Maintenance,” IEEE
Transactions on Software Engineering, Vol. 17, No.
8, pp- 751-761, August 1991.

[6] James R. Lyle, Evaluating Variations on
Program Slicing for Debugging, Ph.D. Dissertation,
Computer Science Department, University of
Maryland, College Park, MD, 1984.

[7] - John McDermid, Software Engineer’s Reference
Book, CRC Press, Inc., Boca Raton, Florida, 1993.
[8] B. Stroustrup, C++ Programming Language,
3" Edition, Addison-Wesley, Inc., Reading,
Massachusetts, 1997.

[9] “UNIX IN A NUTSHELL,” http://www.
oreilly.com/catalog/unixcd/chapter/c02_043.htm,
Last Update: November 1998, Last Access: May
19, 2003.

x

