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Free Vibration of Beams via Finite Difference Scheme

Boonchai Phungpaingam

~ This paper aims to present the finite difference
scheme tackling with the wave equation. Based on
finite difference scheme, the dynamic equilibrium
shapes and natural frequency of three types of beams
(e.g. simple, fixed-fixed and cantilever beams) have
been evaluated. For dynamic equilibrium, the explicit
finite difference equations have been derived, the
consistency of the scheme has been proved and the
stabdlty of the scheme has been determined. The
natural frequencies are demonstrated by finding the
lowest eigenvalue of each type of the beam. From the
results, it is found that the accuracy of the results depend
on the number of discretization for both time and

space. However, the discretization of time and space

must obey the stability condition which is a = ﬂ‘< Lo
mh* 4

Keywords : Finite difference, beam, eigenvalue, natural
frequency

Introduction
In the real world problems, there are many
problems that take the effect from vibration which

comes from nature and human being. The well-known

vibration from nature is the earthquake. This is the
natural disaster which killed many people in the past.
The proliferation of earthquake in many part of the
world especially in Thailand is the signal to focus on
the study of vibration of the structures for preventing

the harm from the earthquake. Fig. 1a and 1b show the

damage of structures due to earthquake.

Fig. 1 The damage of structures due to earthquake; a) 1952
Santa Babara earthquake: b) 1933 Long beach California

earthquake.

There are also many types of vibration due to
human being such as from explosion, running of cars
or machines ect. Then the vibration of the structures
should be investigated to find the behavior of vibration
of each type of structural members. In this paper, the

free vibration of three major types of beams (simple
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beam, fixed-fixed beam and cantilever beam) will be
considered. This paper purposes to i) find the numerical
scheme for studying the free vibration of three major
types of beams (e.g. simple beam, fixed-fixed beam
and cantilever beam) and ii)find the natural or
fundamental frequency of these beams.

As aforementioned objectives, then the finite
difference scheme for the problem is established. The
results will be compared with exact solutions. Finally
the physical behaviors of vibration of these beams will
be investigated.

Statement of the problem and notations

This section the meaning of each type of beams
and notations are considered. In Fig. 2, three types of
beams are shown. Fig. 2a) is the simple beam; one end
of beam is hinged and another end is placed on the
roller support. The hinged end constrains the transla-
tion in both x and y directions. The roller support
constrains only in y direction. However at the both
ends, the beam can rotate freely about its axis. These
properties of support ends are utilized as boundary
conditions of the problems. For the simple beam, at
hinged end there is no deflection and bending moment
about this end is zero. Fig. 2b) is fixed-fixed beam;
both ends are fixed then tHere is no translation and
rotation about its axis. The boundary conditions of this
type of beam are the deflections and rotations at its
ends are zero. Fig. 2¢) is the cantilever beam; one is
fixed again translation and rotation another end is free
end. Then the boundary conditions for this type of the
beam are no deflection and slope at fixed end and
there are no bending moment and shear force at free
end. Table 1 shows the summary of boundary

conditions for each type of the beams.
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Fig. 2 Three types of beams; a) simple beam b) fixed-fixed

beam c) cantilever beam

Table 1. Boundary conditions of the beams

Types of Atx=0 Atx=L

Beams 0,0 | 0,0 v [0 [,00 v
simple 0 ul 0 |u0 0 w0 0 |u0
fixed- fixed 0 0 w0 |u0 0 0 u0[u0
cantilever 0 0 w0 |u0]| w0 u0 0 0
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As it can be seen in Fig. 2, the beams have
flexural rigidity (EI), mass (m) and span length (L).
The parameters (EI, m and L) are defined as constants.
The beams deform in y direction and then the measure
from undeformed configuration to deformed configura-
tion is defined by the unknown y(x,t). The slope of the
beam is symbolized by . When the beam deforms, the
internal forces that occur in structures are bending
moment (M) and shear force (V). In mathematics, the
bending moment is proportion to curvature of the beams
and shear force is derivative of bending moment. The
equations for bending moment and shear force are

presented below.
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Formulation

The equation that describes the motion of beam

can be presented as.

4 E
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el y()f,t)Jr | y(f. A= 3)
fix L
where
E = Young modulus
I = Moment of inertia
m = Mass per unit length
X = Horizontal displacement

y(x,t) = Deflection

To solve above equation, there are many methods

to solve this equation. One is analytical method which

closed form and exact solutions are obtained such as
separate variable technique [1]. Another is numerical
method which approximate solutions are obtained such
as finite element method [2] and finite difference method
[3,4]. However finite difference method is the simplest
and high accuracy method under prescribe conditions.
Then in this paper, we present the finite difference
method for solving Eq (1).

Consider the first term of Eq (3), after discretizing

by central difference which gives the accuracy in the

)
order of O(hz,k" ) The result is.
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Similarly for the second term of Eq (3).

Ty _ My ot oony mi
L2 = —(y™. 29"+ y 5
w00 DLt ILY) )

Substituting the right hand side terms of Eqs (4) and
(5) into Eq (3) we have.

w50 Lt oL AL+ L 0 20+ 0= 0 (6)
k are h time and space intervals respectively.

Rearrange the Eq (6), the explicit numerical scheme

is shown in the following form.

yit=a(yn.- Vet 6yn- 4ynat o)t 2y va' (D)
where

Llk*
mh' (8)

a=

As it can be seen in Eq (7), this is a three
levels scheme. There is a difficulty to define the value

at time step n-1. The procedure that can solve this
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problem is setting time step n-1 as initial time step,
approximate deflection y(x,t) time step n by Taylor’s
series and y(x,t) at time step n+1 by Eq (7).

The deflection shape of the beams in time step
n-1 (0) is known by initial configuration. This initial
configuration may be called excited stage. The deflection
y(x,t) at time step n (1) can be evaluated by expanding

the Taylor’s series about time step 0 as follows.

Y= k()L + ,;_:(y" Y, + OO ©)
Let

fu= Vo (10)
Em = (J’t)?n ()

From Eq (3),
Yu= Jut W= SUmrm Y 6fu- 4furt Su2) (12)

Substituting Eqs (10)-(12) into Eq (9), we obtained

Vo= Jut Mum SUam Mt 6fu 4fur¥ foy)  (13)

The Eqs (7) and (13) together with suitable
boundary conditions are utilized in solving the solutions
of the problem.

Consistency
To prove the consistency of Eq (7), one must

expand deflection y(x,t) about m and n as follows.

o
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Add the Eqs (14) with (15), Egs (16) with (17) and
Egs (18) with (19) , we obtain the following equations

respectively.
(20)
Yr,r'r+| + yl’l’l b= 2./Vl’:l + k-(y" )ZI 2 ()(kl)
Vo=t )+ 2y +o(r) @21
mt2T Ym- 2T 2m Lk ] T L
5 2h'
Ve v =+ h-(yxx),r;, * T!(YMX):: * 0(h°) (22)

Rearrange the Eq (17) into the following form.
va'tynt = a(nat yao) A0nt YR SV 2L (23)
Substituting Eqs (20)-(22) into Eq (23), we have

k'
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5
With some algebraic manipulation, we have
0w+ O ) - alt (e, + 00) (25)
Eq (25) is reduced to the following equation.
(e Y+ 0k +hn )0
Vi), ” (Ve ), ( ): (26)

Take the limit of the parameters h and k into zero.

The Eq (26) becomes.

EI
Oy + —(eer)y, = 0 @7

Stability
The stability condition of this scheme is evaluated
by using Von Neumann analysis. However the scheme

in Eq (7) is three-level scheme, then the three-level
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scheme must be reduced into two-level scheme for
using Von Neumann analysis. Let, then the Eq (7) can
be rewritten into the system of equation as follows.
Vo= a(a.- 4yt 6¥5- 4yt ya o)t 20a- v (28)
AR (29)
The Fourier transformation of y” . " "  and y),. .
are shown below.

Yme1= ePhyn = (cos ph+ isin ph)yh, (30)
Y= e Pyt = (cos ph- isin ph)yl @1
Ym+2= e’2ﬂh " = (cos2ph+isin2Bh)yy,  (32)
Ym-2= ’Zﬂh " = (cos2ph- isin2ph)y, (33)
Substituting Eqs (30)-(33) into Eq (28), the Eq (28)
becomes.

"H = (2- a(2cos2ph- 8cos ph+ 6))yy, - Vy 34)

The Eqs (34) and (29) can be rewritten in the matrix
form as.

1)’1'11 {l

* v;:,+1£

1 0

(DO)(D@

- a(2cos2ph- 8cos ph+ 6) - 13%2 39)

1
Vm

By using the identity of trigonometry the Eq (35)

transforms into Eq (36).

wtlii & . 4BBhO W
- 16a =41
{y"' . §z 7Y (36)
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m e m

Find the eigenvalue of coefficient matrix of Eq (36),

the characteristic equation is obtained.
& . 4 Zh®
72~ §2- 16asin* =A+1=0
e 4 o

The largest value of Eq (37) must be less than
1 to guarantee the stability of the solutions. The roots

of Eq (37) are determined below.

ay=1- 8asin4§%’%ﬂt 4\/¢;sin2§%h—§ " 4asin4% (38)

In the case of, - 1+ 4as‘m4g%< 0 the Eq (38) is

the complex number and shown in the following equation.

O

2= 1- Basin’ Eﬂg;-t asinz%i 1- 4asin4§ﬂ—2h§ (39)

Where
P=iy (40)

Q!

The magnitudes of the Eq (39) are 1, and then
we guarantee that under the condition of

. 4 @ho .
- 1+ 4asin g—+< 0 the solutions must converge.
29 &

b . 4@ho .
From the stability condition, - 1+ 4asm4E7°i< 0 it is lead to
]
&hho 1
4asin4g—7< I® a< — 41)
29 - :

From Eq (41) the maximum value of sin“?%éj is 1 then

the maximum value of the left hand side is 4a. Hence

Lis . . 2
4a<l ® a< p is stability condition that we guarantee.

Method of the solutions

The procedure of the solution for three major
types of beam problem will discuss in this section. The
Eqgs (7) and (13) with the suitable boundary conditions
play the crucial role in solving the problem. The picture

below is the simple beam which will be discussed firstly.

El,m

g

—

Fig. 3 Simple beam

From Fig. 8, the simple beam is discretized and shown in Fig. 4
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Fig. 4 Discretization of simple beam

The white points are the points that we must
evaluate. Due to this scheme utilizes two nodes around
the considered point. Then the difficulty can be arisen
when node 2 and m-1 are considered. The black points
do not know the values by initial configuration. How-
ever we can eliminate points which are out of domain
by finding the relationship between black and white
nodes. The black points are the points which out of
domain (no need to evaluate the values) but need to
find the relationship with the points with in domain
(white points) for the solutions.

The relationship of black and white nodes can
be found by boundary conditions. The boundary conditions
of the simple beam is the bending moment and deflection

at x=0 and x=L are zero.

Boundary conditions:

2 "
1 y(f ) -0 @ Ve 2yt =0 (42)
ﬂ X [ discretization ~ ~
*y(x,t
X _o ® yrp-2pm 50,20 “43)
1'[ 5 o - discretization '
ye |, =0® y'=0 (44)
yx,0)|_,=0® y,=0 (435)

Eqs (42)-(45) lead to the relationship in Eqs (46) and (47).

Vo=-)1 (46)

Vo= Yo 47

For the case of fixed-fixed beam, Figs. 5 and 6
are the fixed-fixed beam and discretized fixed-fixed

beam respectively.
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Fig. 5 Fixed-fixed beam

Fig. 6 Discretization of fixed-fixed beam

Similarly with the previous case (simple beam),
the relationship between black and white nodes are
found by boundary conditions. The boundary condi-
tions for fixed-fixed beam are the slope and deflection

at x=0 and x=L are zero (see Egs. (48)-(49)).

Boundary conditions:

W -0 ® y-y-o0 48)
ﬂx =0 discretization © ~ Yo

I _ L

. =0 ® Y m+1 " Y m- =0

ﬂx o discretization 1 1 (49)

From Eqs (48) and (49), the relationships between

black and white nodes are.

ve= ¥ (50)
Yorir = Vo1 G

For the case of cantilever beam, Figs. 7 and 8 are

cantilever in continuous and discretized models.
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Fig. 7 Cantilever beam
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Fig. 8 Discretization of cantilever beam

Similarly with the previous cases (simple and
fixed-fixed beams), the relationship between black and
white nodes are found by boundary conditions. The
boundary conditions for this case are i) the slope and
deflection at x=0 are zero ii) the bending moment and
shear force at x=L are zero.

For the boundary conditions at x=0, the Eq (50)
is obtained. At x=L, the equations of bending moment

and shear force are described below.

Tyeenf _M_ (52)
ES ;B

Ty ¥V _,
v |, H (53)

After discretizing, the Eqs (54) and (55) are obtained.

Yeei= 205 ¥ Yo, =0 (54)

y:ﬂl- 2y:1-|' 2)"::"1+y:»:= 0 (55)

The Eqs (54) and (55) are used for finding the value
of Below is the box diagram for computation the

results.

Input .| Computation by Egs

S }
Initial configurations | (25),(2.11) and \ The results
2 is known values

" boundary conditions !

Fig. 9 Box diagram of computation.

From Fig. 9 the box diagram that shows the
step of computation. The input value is initial
configuration of the beams. In computation step, the
finite difference scheme in Eqs (7), (13) and suitable
boundary conditions are utilized. The results are
displayed in the form of spatial configuration vary with
time.

Natural Frequency
The differential equation which represents the

behavior of frequency of the beams is expressed below.

diy e 0

Bt ly=0 (56)

where

o m? (57)
El

The parameter that appears in Eq (57) is called
natural frequency (rad/sec). Eq (56) is discretized into

the following form.

Ymt2= 4Vm+ Vm = 4Vm- |+ Ym- 2~ lhqym =0 (58)

Using Eq (58) with boundary conditions, we can construct

the eigenvalue system in the form of Eq (59)

[41{v}- 6[7Kv}= {0} ® [4- bI]{v}= {0} (59)
where

[A] is the coefficient matrix which depends on boundary
conditions of the problem.

[I] is the identity matrix.

b=I h' is the eigenvalue.

{v] is eigenvector.
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For the case of simple beam, Eq (58) with
boundary conditions in Eqgs. (42) and (43) are utilized
for obtaining the coefficient matrix.[A] In Fig. 4, we
establish the system of equation by considering the
nodes with in domain (white nodes). As previous mention,
the nodes that locate out of the domain (black nodes)
must be evaluated in terms of white nodes. Then the

coefficient matrix is determined below.

5 -41 0 0 0 0u

4 6 -41 0 0 OE

1 -4 600 0 oY (60)
[4=§% 1 0o o o 1 oY

00 0 O 6 -4 1y

0 0 0 1 -4 6 -4

00 0 0 1 -4 5§

The matrix in Eq (60) has dimension by m-2xm-2
(m = number of spatial node). Then substitute Eq (60)

into (59), we obtain.

jés -4 1 0o 0o oU Q@ 0 0 0 0 oy

€ u &

g 4 6 -4 1 00 a gm Lo o o o4y

€1 -4 6 -4 1 ol ® 0o 1 0 0 0

¢ RAE: Th= () (61)
gu 1o-4 6 -4 1 3 g; o0 1 0 o4}y

€ - - 4Y

L e R % 00 0 1 oty

€ o o 1 -4 si $ 00 0 0 1§y

Similarly for the case of fixed-fixed beam, the coefficient

matrix is.
§7 -4 1 0 0 0 0y
¢ i
§4 6 -4 1 0 o oY
&1 -4 6 0 0 0 o}
[4F& 1 0 0 0 1 oy (62)
§ 0 0 0 6 -4 1}
0 0 0 1 -4 6 -4
€0 0 0 0 1 -4 7%

Eq (62) is the matrix of dimension. Substitute Eq (62)

into (59), the result is.

j¢7 -4 1 0o o oun Q@ 0 0 0 o ofjy
€ u &
€4 6 -4 1 [ @ 1 0 0 0o o4}y
¢ 0§
1 -4 6 -4 1 0 01 0 0 o4ty
¢ AL b= ()
¢ : 5 u 7~ 1(63)
gn 1 4 6 4 1 E g 0o 0 1 o o}y
g 0 1 -4 6 - @ 00 0 1 o4}y,
g() 0 0 1 -4 k) lu.l g 0o 0 0 0 1 y

For the case of cantilever beam, the coefficient matrix is.

7. -4.0 0 .0, 0 0F
€4 6 -4 1 0 0 oy
€1 -4 6 0 0 0 oU
& u
[M=§ 1 0o 0o o 1 o} (64)

g0 0 0 0 6 -4 1}

U
§0 B3, Goyely? iy 15 -23
0 0 0 0 2 -4 29

The Eq (64) is the matrix which has dimension equals
m-1 = m-1 . Substitute Eq (64) into (59), one obtains.

j¢7 -4 1 0o o ou § 0 0 o o ofyf
& u €
€4 6 -4 1 0 oW @ 1 0 0 0 o4iy
N io§
1 -4 6 -4 1 0 01 0 0 0
¢ u 1hé Y= (65)
go 1 -4 6 -4 1 a gn 00 1 0 0
v o1 4 5 =g @ o 0o o 1 oty
S o o 2 -4 2§ $ 00 0 0 1}fy

The Eqgs (61), (63) and (65) are the equations that must
be solved for the eigenvalues. As it can be seen from
Eqs (61), (63) and (65) that there are many eigenvalues
depend on size of matrix coefficient. However the
natural or fundamental frequency is the lowest
frequency corresponding with the lowest value of
eigenvalues from the matrix.
Results and Discussion

The calculation of the results is performed by
computer using FORTRAN code. Inputs of this program
are 1) Moment of inertia (I), i) Young modulus (E),
iif) Mass per unit length (m), iv) Number of node in
space, v) Number of time step, and vi) Time interval.
After input all of these parameters, the calculation will

compute and return the results which are the position
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of points of each node. In this case, the input values
are moment of inertia (I) = le-2, Young modulus (E)
= 200, mass = 1, number of node for space = 10,
number of time step = 300, time interval = 2e-3.

As it can be seen in Fig. 10, the beam is
excited in the shape of sine wave (see circle symbol in
Fig. 10. The beam also vibrates in the shape of sine
wave. The frequency of vibration can be observed by
tracking any node with time (see Fig.11). From observing,
the period of the vibration is about 0.45 sec, then the
frequency (/= %) is 2.2222 Hz. Normally the natural

frequency is expressed in term of which shown below.
2p
w=2pf= o3 (rad/sec) (66)

Hence in this case @ =13.9625 rad/sec.

—O0— t=0

2 —a— t=0.05
—a— t=0.1
—— =0.15

Fig. 10 Vibration of simple beam

Period= 0.45 sec

1 time (sec)
7

Deflection at node 5
o -

24 Fig. 11 Motion of node 5 of simple beam

To increase the accuracy of the results, the
number of grid points should be increased. From Fig.
12, as the number of grid point increase (from 10 to 20
points) the results converge to the exact solutions. The

equation that expresses the exact results is shown below.

y(x,1)= y(x,0)cos(wr) (67)
where
: _ an@px0
y(x,0) smm (68)
e p? [EI
ml' 69)
20

—e— Finite Difference 10 nodes in space
—&— Exact solution
—a— Finite Difference 20 nodes in space

0.00 o

x

Fig.12 Numerical convergence of simple beam

The instability in numerical can occur if the
criteria in Eq (41) is fail. The example of this event is
presented in Fig. 13. The criterion for convergence is
time interval must be less than 4.36485e-3 sec. If we
set the time interval equal of Se-3, the numerical instability

is displayed in Fig. 13.

0.0 2 4 6 8 10

Fig. 13 Numerical unstable of simple beam
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For the case of fixed-fixed beam, vibration of
fixed-fixed beam is shown in Fig. 14. The input values

are the same as the case of simple beam.

Fig. 14 Vibration of fixed-fixed beam

The results can be explained similarly as a previous
case (simple beam). The beam is excited in to the sine
wave. The vibration of this beam also vibrates in the
shape of sine wave. The period (T) of this type of
beam is observed and its value equal of 0.2 sec (see
Fig. 15), then the frequency of this type of beam is 5
Hz or in unit of rad/sec is 31.4159 rad/sec (refer to Eq. (66)).

Fig. 15 Motion of node 5 of fixed-fixed beam

The accuracy of the result is increased by increasing
the number of grid points. In this case, we increase the
grid points from 10 to 20 points. Fig. 16 shows the
convergence of the numerical results which closed to

the exact solutions when grid points are increased.

Fig. 16 Numerical convergence for fixed-fixed beam

The numerical instability when time interval equals of

Se-3 sec is shown in Fig. 17.

150
1004
50
Y o4
-50

-1004

Fig. 17 Numerical instability of fixed-fixed beam

In the final case, cantilever beam, the vibration of
cantilever beam is shown in Fig. 18. The input values

are the same as two previous cases.

Fig. 18 Vibration of cantilever beam
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The beam is excited in the shape of half-sine wave,
then the beam vibrates according to the shape that was
excited. The motion of node 10 of this type of beam is

illustrated in Fig. 19

1.5-k— ‘\

1.04

o
e
o 5
2
® o time (sec)
c a T T T 1
§ 0 2 127 T14u 1s
=
[ i
2 s
1.01
1.5

Fig. 19 Motion of node 10 of cantilever beam

By observation, the period (T) of this type of the beam
is 1.3 sec, then the frequency is 0.76923 Hz or w =2p
f = 4.833 red/sec (see Eq (66)). The convergence of

the numerical results is demonstrated in Fig. 20.

Fig. 20 Convergence of the numerical results of cantilever beam

The numerical instability of the results is shown in Fig.

21. The time interval of Se-3 is the input of this case.

10

-10

Fig. 21 Numerical instability of cantilever beam

Three types of vibration of beams are vibrated
in difference frequency depend on stiffness (EI/L), mass
(m) of structures and boundary conditions. For example
theses beams have same stiffness and mass but they
vibrate with difference values of frequency then the
boundary conditions play the important rule in natural
frequency of the structures.

Natural frequency

The results of natural frequency are shown in
Table 2. There are many numerical methods to find the
eigenvalues of coefficient matrix such as Jacobi trans-
formation, Given method and Householder method ect.
The details of each method should consult with Press
et. al. [5]. As it can be seen from Table 2, the results
are converged into exact solutions when the numbers

of grid points are increased.

Table 2. Comparison between the results of FDM and Exact solutions

Types of Beams FDM Exact solutions
5 nodes | 10 nodes
simple beam | 9.37059 | 9.92043 9.86960
fixed-fixed beam | 17.9243 | 21.27696 22
cantilever beam | 3.35619 | 3.48017 3.52

The values that appear in table are the values of coefficients of J EI‘ "
mL
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The values that appear in table are the values of
coefficients of.
Conclusions

The finite difference scheme with order of
accuracy O(h’ + k) gives the good agreement of the
results. From the results, the conclusions may be drawn
as follows.

1. The beam is excited with transcendental
functions which correspond to the first or
fundamental mode of vibration.

2. The frequency of vibration equals of natural
frequency.

3. The results from finite difference schemes
are good agreement with the exact solutions.

4. As increase the number of nodes of space
the approximate solutions are converged to

the exact solutions.
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