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ABSTRACT

The purposes of this thesis are (1) to study properties and characterizations of
small principally injective modules, (2) to study properties and characterizations of
small principally injective rings, and (3) to find some relations between small
principally injective modules, small principally injective rings and projective modules.

Let R be a ring. A right R-module M is called principally injective if every R-
homomorphism from a principal right ideal of R to M can be extended to an R-
homomorphism from R to M. A right R-module M is called small principally injective if
every R-homomorphism from a small and principal right ideal of R to M can be
extended to an R-homomorphism from R to M. R is called a right small principally
injective ring if Ry is a small principally injective module.

The results were as follows. (1) Let R be a right small principally injective

ring. Then (1.1) Ir(Ra) = Ra for any aeJ(R). (1.2) If aR®bRand Ra® Rbare
both direct, a,be J(R), then I(a)+I1(b) = R. (2) Let R be right small principally
injective, a€ R and be J(R). (2.1) If bR embeds in aR, then Rb is an image of Ra.
(2.2) If aR is an image of bR, then Ra embeds in Rb. (2.3) If bR=zaR, then

Ra = Rb. (3) The following conditions are equivalent for a ring R : (3.1) every small
and principal right ideal of R is projective; (3.2) every factor module of a small
principally injective module is small principally injective; (3.3) every factor module of
an injective R-module is small principally injective. (4) Let R be right small

principally injective and b, € J(R), (1<i<n). (4.1) If Rb ®..®Rb,,is direct, then
any o :Rb +...+Rb, — R can be extendedto R. (4.2) If bR®...®Db,R is direct, then

R(b,+...+b,) = Rb +...+RD,.

Keywords: principally injective rings, small principally injective rings
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CHAPTER 1
INTRODUCTION

In modules and rings theory research field, there are three methods for doing
the research. Firstly, to study about the fundamental of algebra and modules theory over
arbitrary rings. Secondly, to study about the modules over special rings. Thirdly, to
study about ring R by way of the categories of R-modules. Many mathematicians have

concentrated on these methods.

1.1 Background and Statement of the Problems

Many generalizations of the injectivity were obtained, e.g., principally
injectivity and mininjectivity. In [2], V. Camillo introduced the definition of principally
injective modules by calling a right R-module M is principally injective if every R-
homomorphism from a principal right ideal of R to M can be extended to an R-
homomorphism from R to M. In [7], Nicholson and Yousif studied to the structure of
principally injective rings and gave some applications of these rings. A ring R is called
right principally injective if every R-homomorphism from a principal right ideal of R to
R can be extended to an R-homomorphism from R to R. In [12], L.V. Thuyet, and T.C.
Quynh introduced the definitions of a small principally module. A right R-module M is
called small principally injective if every R-homomorphism from a small and principal
right ideal aR to M can be extended to an R-homomorphism from R to M. In [10], N. V.
Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai introduced the definitions of quasi
principally injective modules. A right R-module M is called quasi-principally injective
if every R-homomorphism from an M-cyclic submodule of M to M can be extended to
M.

1.2 Purpose of the Study

In this thesis, we have the purposes of study which are to extend concept of
the previous works and to generalize new concepts which are :

1.2.1 To extend the concept of principally injective rings.

1.2.2 To generalize the concept of small principally injective modules.



1.2.3 To establish and extend some new concepts which are dual to small

principally-injective rings and small principally-injective modules.

1.3 Research Questions and Hypothesis

We are interested in seeing to extend the characterizations and properties
which remain valid from these previous concepts which can be extended from
principally injective rings, principally quasi-injective modules [9], and small -injective
rings [12]. In this research, we give characterizations and properties of these modules.
A right R-module M is called small principally injective if every R-homomorphism
from a small and principal right ideal aR to M can be extended to an R-homomorphism
from R to M. If Rg is SP-injective modules, then we call R is SP-injective rings. In this
research we give some properties and characterizations of SP-injective modules and SP-

injective rings.

1.4 Theoretical Perspective

In this thesis, we use many of the fundamental theories which are concerned to
the rings and modules research. By the concerned theories are :

1.4.1 The fundamental of algebra theories.

1.4.2 The basic properties of rings and modules theory.

1.5 Delimitations and Limitations of the Study

For this thesis, we have the scopes and the limitations of studying which are
concerned to the previous works which are:

1.5.1 To study properties and and characterizations of SP-injective modules.

1.5.2 To study properties and and characterizations of SP-injective rings.
1.6 Significance of the Study

The advantage of education and studying in this research, we can improve and

develop the concepts and knowledge in the algebra and modules research field.

10



CHAPTER 2
LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the
modules and rings theory which are used in this thesis.

2.1 Rings, Modules, Submodules and Endomorphism Rings
This section is assembled summary of various notations, terminology and

some background theories which are concerned and used for this thesis.

2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary
operations + and e, called addition and multiplication (also called product),
respectively, such that

(1) (R, +) is an additive abelian group.

(2) (R, *) is a multiplicative semigroup.

(3) Multiplication is distributive (on both sides) over addition; that is, for
alla, b, c e R,as(b+c)=asb + asc and (a + b)ec = asc + bec.

The two distributive laws are respectively called the left distributive law
and the right distributive law.

A commutative ring is a ring R in which multiplication is commutative;
i.e. if a*b = bea for all a, b € R. If a ring is not commutative it is called

noncommutative.

A ring with unity is a ring R in which the multiplicative semigroup (R, ®)
has an identity element; that is, there exists e € R such that ea = a = ae for all a € R.
The element e is called unity or the identity element of R. Generally, the unity or
identity element is denoted by 1. In this thesis, R will be an associative ring with
identity.

2.1.2 Definition. [14] A nonempty subset | of aring Ris called an ideal of R if
(1) a,b e limpliesa-b € I.



(2) aelandr e Rimplyar e landra e I.
2.1.3 Definition. [13] A subgroup I of (R, +) is called a left ideal of R if Rl
I, and aright ideal if IR c |I.

2.1.4 Definition. [14] A right ideal | of aring R is called principal if | = aR for

some a € R.

2.1.5 Definition. [14] Let R be a ring, M an additive abelian group and (m,

r— mr, a mapping of M x R into M such that

1) mreM

(2) (Mt mp)r = myr + myr

(3) m(ri+ rz) = mry+mr;

(4) (mryra = m(rrz)

(5) mel=m
forallr,r;, r, e Rand m, my, my € M. Then M is called a right R-module, often written
as Mg. Often mr is called the scalar multiplication or just multiplication of m by r on
right. We define left R-module similarly.

2.1.6 Definition. [13] Let M be a right R-module. A subgroup N of (M, +) is
called a submodule of M if N is closed under multiplication with elements in R, that is
nr e Nforalln e N, r € R. Then N is also a right R-module by the operations induced

fromM:NxR—N, (n,r)-nr,foralln e N, r e R.

2.1.7 Proposition. A subset N of an R-module M is a submodule of M if and
only if (1) 0 e N.
(2) n1, n2 € N impliesny— n; € N.
(3)n e N, r e Rimpliesnr € N.
Proof. See [15, Lemma 5.3]. O

2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of
M. Then the set of cosets
MK={x+K|xeM}
12



is a right R-module relative to the addition and scalar multiplication defined via
(x+K)+(y+K)=(x+y)+K and (x+K)r=xr+K.

The additive identity and inverses are given by
K=0+K and —-(x+K)=-x+K.

The module M/K is called (the right R-factor module of ) M modulo K or the
factor module of M by K.

2.1.9 Definition. [13] Let M and N be right R-modules. A functionf: M — N
is called an (R-module ) homomorphism if for all m, m;, m, e Mand r € R
f(mar +mg) =f(my)r +f(my).
Equivalently, f(my+my)=f(my) +f(my) and f(mr)=f(m)r.

The set of R-homomorphisms of M in N is denoted by Homg(M,N). In
particular, with this addition and the composition of mappings, Homg(M,M) =
Endgr(M) becomes a ring, called the endomorphism ring of M and f € Endg(M) is
called an R-endomorphism. [13, 6.4]

2.1.10 Definition. [1] Let f: M — N be an R-homomorphism. Then

(1) f is called R-monomorphism (or R-monic) if f is injective (one-to-one).
(2) f is called R-epimorphism (or R-epic) if f is surjective (onto).

(3) f is called R-isomorphism if f is bijective (one-to-one and onto).

Two modules M and N are said to be R-isomorphic, abbreviated M = N in case
there is an R-isomorphism f : M — N.
2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping 7k : M
— M/K from M onto the factor module M/K defined by
nk (X) =x+K e M/K (xe M)
IS seen to be an R-epimorphism with kernel K. We call 7 the natural epimorphism of M
onto M/K.

13



2.1.12 Definition. [1] Let A — B. Then the function 1 =1 _g: A — B defined
by:=(1g|a) : ar>a for all a € Ais called the inclusion map of A in B. Note that if A c

Band Ac C,and if B= C, thenia _g #1a_c . Of course 15 = ia _ .

2.1.13 Definition. [14] Let M and N be right R-modules and let f : M — N be
an R-homomaorphism. Then the set
Ker(f) ={xeM|f(x)=0}iscalled the kernel of f
and
f(M) ={f(x) e N | x e M} is called the homomorphic image (or simply
image) of M under f and is denoted by Im(f).

2.1.14 Proposition. Let M and N be right R-modules and let f : M — N be an
R-homomorphism. Then
(1) Ker(f) is a submodule of M.
(2) Im(f)=1f(M) is asubmodule of N.
Proof. See [13, 6.5]. 0

2.1.15 Proposition. Let M and N be right R-modules and let f : M — N be an

R-isomorphism. Then the inverse mapping f-1: N — M is an R-isomorphism.

Proof. See[14, Chapter14, 3]. 0

2.1.16 Theorem. Let M, M’, N and N’ be right R-modules and letf: M — N
be an R-homomorphism.
(1) If g : M — M’ is an epimorphism with Ker(g) < Ker(f), then there
exists a unique homomorphism h : M” — N such that
f =hg.
Moreover, Ker(h) = g(Ker(f)) and Im(h) = Im(f), so that h is monic if and only if
Ker(g) = Ker(f) and h is epic if and only if f is epic.
(2) If g : N° — N is a monomorphism with Im(f) < Im(g), then there

exists a unique homomorphism h : M — N’ such that

14



f =gh.
Moreover, Ker(h) = Ker(f) and Im(h) = g (Im(f)), so that h is monic if and only if f is

monic and h is epic if and only if Im(g) = Im(f).

N S

M— s N
v
! N .
\/\ M' h /,/ g
M N’
Ker(g) C Ker(f)
(1) (2)
Proof. See [1, Chapter 1, 46]. 0

2.1.17 Definition. [20] A submodule K of the module M is fully invariant in
M if f(K) < K for every endomorphism f of M.

2.2 Essential and Superfluous Submodules
In this section, we give the definitions of essential and superfluous

submodules and some theories which are used in this thesis.

2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M,
abbreviated K ¢ M, if for every submodule L of M, KN L =0 impliesL = 0.

2.2.2 Definition. [13] A submodule K of M is called superfluous (or small) in
M, abbreviated K <« M, if for every submodule L of M, K + L = M implies L = M.

2.2.3 Proposition. Let M be a right R-module with submodules K c N c M
and H c M. Then
(1) N M ifandonly if KK Mand N/K « M/K;
(2) H+ K« M ifandonly if H<« Mand K « M.
Proof. See [1, Proposition 5.17]. 0

15



2.2.4 Proposition. If K < M and f: M — N is a homomorphism then f (K) «
N. In particular, if K < M < N then K « N.
Proof. See [1, Proposition 5.18]. 0

2.3 Annihilators and Singular Modules

In this section, we give the definitions of annihilators, singular modules and

some theories which are used in this thesis.

2.3.1 Definition. [1] Let M be a right (resp. left) R-module. For each X < M,
the right (resp. left) annihilator of X in R is defined by
rR(X)={reR|xr=0,Vxe X} (resp.lr(X)={reR|rx=0, Vxe X }).

For a singleton {x}, we usually abbreviated to rg(x) (resp. Ir(x) ).

2.3.2 Proposition. Let M be a right R-module, let X and Y be subsets of M
and let A and B be subsets of R. Then
(1) rr(X) is a right ideal of R.
(2) XY imples rr(Y) < rr(X).
(3) AcB imples Iy(B)cIu(A).
(4) Xclurr(X)and Acrr Iy (A).
Proof. See [1, Proposition 2.14 and Proposition 2.15]. 0

2.3.3 Proposition. Let M and N be right R-modules and let f : M — N be a
homomorphism. If N’ is an essential submodule of N, then f (N’ ) is an essential
submodule of M.

Proof. See [4, Lemma 5.8(3)]. 0

2.3.4 Proposition. Let M be a right R-module over an arbitrary ring R, the
set Z(M)={x e M|rgr(x) isessential in Rg } is a submodule of M.

Proof. See [4, Lemma 5.9]. 0

16



2.3.5 Definition. [4] The submodule Z(M) = { x € M | rr(X) is essential in Ry }
is called the singular submodule of M. The module M is called a singular module if
Z(M) =M. The module M is called a nonsingular module if Z(M) = 0.

2.4 Maximal and Minimal Submodules
In this section, we give the definitions and some properties of maximal
submodules, minimal (or simple) submodules and some theories which are used in this

thesis.

2.4.1 Definition. [13] A right R-module M is called simple if M = 0 and M has

no submodules except 0 and M.

2.4.2 Definition. [13] A submodule K of M is called maximal submodule of M
if K= M and it is not properly contained in any proper submodules of M, i.e. K is

maximal in M if, K = M and for every A c M, K < A implies K = A.

2.4.3 Definition. [13] A submodule N of M is called minimal (or simple)
submodule of M if N # 0 and it has no non zero proper submodules of M, i.e. N is
minimal (or simple) in M if N # 0 and for every nonzero submodules A of M, A c N

implies A =N.

2.4.4 Proposition. Let M and N be right R-modules. If f: M — N is an
epimorphism with Ker ( f) = K, then there is a unique isomorphism ¢ : M/K — N such
that.c (m+K) =f (m) forallm e M

Proof. See [1, Corollary 3.7]. O

2.4.5 Proposition. Let K be a submodule of M. A factor module M/K is

simple if and only if K is a maximal submodule of M.

Proof. See [1, Corollary 2.10]. 0

17



2.5 Injective and Projective Modules
In this section, we give the definitions of the injective modules, injective

testing, projective modules and some theories which are used in this thesis.

2.5.1 Definition. [1] Let M be a right R-module. A right R-module U is called
injective relative to M (or U is M-injective) if for every submodule K of M, for every
homomorphism ¢ : K — U can be extended to a homomorphism «: M — U.

A right R-module U is said to be injective if it is M-injective for every
right R-module M.

2.5.2 Proposition. The following statements about a right R-module U are

equivalent :

(1) Uis injective;
(2) Uis injective relative to R;
(3) For every right ideal | — Rg and every homomorphism h : | — U
there exists an x € U such that h is left multiplicative by x
h(a) =xaforalla e I.
Proof. See [1, 18.3, Baer’s Criterion]. 0

2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called
projective relative to M (or U is M-projective) if for every Ngr, every epimorphism g :
Mgr— Ng, for every homomorphism y : Ug— Ng can be lifted to an R-homomorphism
7?: U — M. A right R-module U is said to be projective if it is projective for every right
R-module M.

2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an
injective right (resp. left) R-module.

Proof. See [1, Proposition 18.6]. O

18



2.6 Direct Summands and Product of Modules

Given two modules M; and M, we can construct their Cartesian product M; x
M. The structure of this product module is then determined “co-ordinatewise” from the
factors M; x M,. For this section we give the definitions of direct summand, the
projection and the injection maps, product of modules and some theories which are used

in this thesis.

2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called
a direct summand of M if there is a submodule Y of M suchthat X N Y=0and X +Y =

M. We write M = X @ Y; such that Y is also a direct summand.

2.6.2 Definition. [1] Let M; and M, be R-modules. Then with their products
module M; x M are associated the natural injections and projections
G- Mj—>MixMy and 7 MpxM;— M

(j=1,2), are defined by

p(x1) = (x1, 0), P2(X2) = (0, X2)
and

m(X1, X2) = X1, (X1, X2) = Xa.
Moreover, we have

mer=1m, and mp2=1wm,

2.6.3 Definition. [1] Let A be a direct summand of M with complementary
direct summand B, so M = A @ B. Then
m:.atb-a(aceAbeB)

defines an epimorphism 75 : M — A is called the projection of M on A along B.

2.6.4 Definition. [13] Let {A;i, i € | } be a family of objects in the category C.
An object P in C with morphisms { 7 : P — A; } is called the product of the family {A;,
iel}if:

For every family of morphisms { f;: X — A; } in the category C, there is

19



a unique morphism f: X — P with 5 f = fiforalli e I.

For the object P, we usually write HIA" , I1,4;0r [14,. 1f all A; are
ie

equal to A, then we put 1,4, = Al

The morphism 7 are called the i-projections of the product. The

definition can be described by the following commutative diagram :

T
4 ———> 4,
N A
X

2.6.5 Definition. [13] Let { M;, i € | } be a family of R-modules and ( HM,- :

iel

75 ) the product of the M; . Form, n € HMZ. , I € R, using
ey

mMm+n)=z(m)+ z(n) and m(mr) =5 (M)r,

a right R-module structure is defined on HMZ. such that the 7 are homomorphisms.

iel
With this structure ( HMl. , ;) 1s the product of the { M;, i € | } in R-module.

iel

2.6.6 Proposition. Properties:

@) If {fi:N— M;,iel}isafamily of morphisms, then we get the map
f:N— []a, suchthatnis (fi(n))i_

i€l

and Ker (f) =N, Ker(f;)sincef (n)=0ifandonlyif fin)=0foralli e I.

(2) For everyj € I, we have a canonical embedding

g Mj— HMZ.,suchthatij(mjéi)iehmje M;,

iel

with g7 = Lm,, I.e. 7 is a retraction and g a coretraction.

20



This construction can be extended to larger subsets of | : For a subset A

c | we form the product HMZ. and a family of homomorphisms

i€A
77j? for j €A,
ijHM.—>Mj, fj:
ied 0 forjel—A.
Then there is a unique homomorphism
77J'. for j €A,
én - HMi — HMi with EATG =

ied i€l 0 forjel—A.

The universal property of HMi yields a homomorphism
i€A

A HMZ. — HMl. with zam = m forj e 1.
i€l ied

Together this implies sazam = eam = m for all j € 1, and by the properties of the product

[T, , we get eaza = 1m,.
i€cAd

Proof. See [13, 9.3, Properties (1), (2)] O

2.6.7 Definition. [1] We say (M), is independent in case for each a e A

M, M 0.
m(ﬂza ﬂ)

If the submodules (M), of M are independent, we say that the sum > M, is
A

direct and write

xMa= M,

2.6.8 Proposition. [1] Let (M) be an indexed set of submodules of a

aehA

module M with inclusion maps (i, ) ... Then the following are equivalent:

aehA

@ %Ma is the internal direct sum of (M)A’

(b) i:(?ia:(?Ma — M is monic;

(¢) (M,),ca Is independent;
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(d) (My),c isindependent for every finite subset F — A;

(e) For every pair B,Cc A, ifBN C = @, then (ZMﬂ)ﬂ (XM,)=0.
B ¢

Proof. See [1, Proposition 6.10]. 0

2.7 Generated and Cogenerated Classes
In this section, we give some definitions and theories of the generated and

cogenerated classes which are concerned in this thesis.

2.7.1 Definition. [13] A subset X of a right R-module M is called a generating
set of M if XR = M. We also say that X generates M or M is generated by X. If there is a

finite generating set in M, then M is called finitely generated.

2.7.2 Definition. [1] Let U be a class of right R-modules. A module M is
(finitely) generated by U (or U (finitely) generates M ) if there exists an epimorphism

DU - M
iel

for some (finite) set | and U; € U for every i e I.
If U= {U} is asingleton, then we say that M is ( finitely) generated by U
or (finitely) U-generates; this means that there exists an epimorphism
uh—mMm

for some (finite) set I.

2.7.3 Proposition. If a module M has a generating set L — M, then there

exists an epimorphism

R(L)— M

Moreover, M is finitely R-generated if and only if M is finitely generated.
Proof. See [1, Theorem 8.1]. O

2.7.4 Definition. [17] Let M be a right R-module. A submodule N of M is said
to be an M-cyclic submodule of M if it is the image of an endomorphism of M.
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2.7.5 Definition. [1] Let U be a class of right R-modules. A module M is
(finitely) cogenerated by U (or U (finitely) cogenerates M ) if there exists a
monomorphism

M —>i1;[1Ui
for some (finite) set I and U; € U for every i e I.

If U = {U} is a singleton, then we say that a module M is (finitely)
cogenerated by U or (finitely) U-cogenerates; this means that there exists a
monomorphism

M—-UI

for some (finite) set I.

2.8 The Trace and Reject
In this section, we give some definitions and theories of the trace and reject

which are concerned in this thesis.

2.8.1 Definition. [1] Let U be a class of right R-modules. The trace of U in M
and the reject of U in M are defined by
Try (W) =2{Im(h) | h:U—M forsomeU e U }
and
Rejm (U)=N{ Ker(h) | h: M — U forsomeU e U }.

If U= {U} is asingleton, then the trace of U in M and the reject of U in M are
inthe form  Try (U)=2{Im(h) | h e Homg(U, M) }
and
Rejm (U)=nN{ Ker(h) | h e Homg(M, U) }.

2.8.2 Proposition. Let U be a class of right R-modules and let M be a right R-
module.Then

(1) Trm (V) is the unique largest submodule L of M generated by U;

(2) Rejm (U) is the unique smallest submodule K of M such that M/K is
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cogenerated by U.
Proof. See [1, Proposition 8.12]. O

2.9 Socle and Radical of Modules
In this section, we give some definitions and theories of the socle and radical

of modules which are used in this thesis.

2.9.1 Definition. [13] Let M be a right R-module. The socle of M, Soc(M), we
denote the sum of all simple submodules of M. If there are no simple submodules in M
we put Soc(M) = 0.

2.9.2 Definition. [13] Let M be a right R-module. The radical of M, Rad(M),
we denote the intersection of all maximal submodules of M. If M has no maximal

submodules we set Rad(M) = M.

2.9.3 Proposition. Let & be the class of simple R-modules and let M be an R-
module. Then
Soc(M) = Try (&)
= N{LcM | Lisessential inM }.
Proof. See [13, 21.1]. O

2.9.4 Proposition. Let & be the class of simple R-modules and let M be an R-
module. Then
Rad(M) = Reju (&)
= 2{LcM | LissuperfluousinM }.
Proof. See [13, 21.5]. O

2.9.5 Proposition. Let M be a right R-module. A right R-module M is finitely
generated if and only if Rad(M) « M and M/Rad(M) is finitely generated.
Proof. See [13, 21.6, (4)]. 0
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2.9.6 Proposition. Let M be a right R-module. Then Soc(M) <¢M if and
only if every non-zero submodule of M contains a minimal submodule.
Proof. See [1, Corollary 9.10]. O

2.10 The Radical of a Ring
In this section, we give some definitions and theories of the radical of a ring

which are used in this thesis.

2.10.1 Definition. [1] Let R be a ring. The radical Rad(Rg) of Rg is an (two
side) ideal of R. This ideal of R is called the (Jacobson) radical of R, and we usually

abbreviated by

J(R) = Rad(Rg).

Since R = 1R is finite generated, J(R) <« R. Ifa € J(R), thenaR < J(R) K R
s0 aR « R. If aR « R, then aR < J(R) and so a € aR < J(R). This shows that a e
J(R) ifand only if aR < R.

2.10.2 Definition. [1] Let R be a ring. An element x € R is called right (left)
quasi-regular if 1 —x has a right (resp. left) inverse in R.
An element x € R is called quasi-regular if it is right and left quasi-regular.
A subset of R is said to be (right, left) quasi-regular if every element in it
has the corresponding property.

2.10.3 Proposition. Given a ring R for each of the following subsets of R is
equal to the radical J(R) of R.
(J1) The intersection of all maximal right (left) ideals of R;
(J2) The intersection of all right (left) primitive ideals of R;
(J3) { xe R rxsisquasi-regular forallr,s e R };
(Js) {xeR| rxisquasi-regular forallr e R };
(Js) { x e R| xsisquasi-regular foralls e R };

(Js) The union of all the quasi-regular right (left) ideals of R;
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(J7) The union of all the quasi-regular ideals of R;

(Js) The unique largest superfluous right (left) ideals of R;
Moreover, ( Js3), ( Ja), ( Js), ( Je) and ( J;) also describe the radical J(R) if “quasi-
regular” is replaced by “right quasi-regular” or by “left quasi-regular”.
Proof. See [1, Theorem 15.3]. 0

2.10.4 Proposition. Let R be a ring with radical J(R). Then for every right R-
module M,
J(R)Mgr < Rad(Mg).
If R is semisimple modulo its radical, then for every right R-module,
J(R)Mg = Rad(Mg)
and M/J(R) Mg is semisimple.
Proof. See [1, Corollary 15.18]. 0
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CHAPTER 3
RESEARCH RESULT

In this chapter, we present the results of small principally injective modules

and small principally injective injective rings.

3.1 SP-injective Modules
3.1.1 Definition. [12] Let R be a ring. A right R-module M is called small
principally injective (briefly, SP-injective) if every R-homomorphism from a small and

principal right ideal aR to M can be extended to an R-homomorphism from R to M.

3.1.2 Lemma. Let M be right R-modules. Then M is SP-injective if and only
if foreacha € J(R), Iurr(a) =Ma.

Proof. Clearly Maclyrr(a). (=) Assume that M is SP-injective. Let a € J(R). To
show that Iy rr(a) = Ma. Let x € Iy rr(a). Define ¢ : aR — xR by ¢ (ar) = xr,
for every reR. To show that ¢ is the function. Let ar; and ar, be elements in aR such
that ar; = ar,. Then arj-ar, =0 and so a( ri-r, ) =0. and a(ry-r;) =0, x(r;-rp ) =0.
Hence xri-xrp = 0, then xr; = xr,. Therefore ¢ (ar;) = xr; = xrp = ¢(ary). This shows that
¢ is well-defined. Let ary, ar, € aR and reR. Then ¢(arir+ary) = @(a(rir+ry)) =
X(rir+ry) = xrir+xro, = gar))r+e(ar,). This shows that ¢ is an R-homomorphism. Since
M is SP-injective, there exists an R-homomorphism ¢@: R —M such that @i, = i1

where i;: XR — M and iy: aR — R are the inclusion maps. Then x = g(@) = ¢ (a) =

o (1.a)= ¢ (1)a € Ma.

(<) Let aeJ(R), and let ¢: aR — M be an R-homomorphism. Then
p@) € Iy rr(a), so by assumption, we have ¢(a) = xa for some xeM.
Define ¢: R — M by ¢ (r) = xr every r €R. It is clear that ¢ is an R-homomorphism

and is an extension of . 0



3.1.3 Example. Let R = (E Ej where F is a field, Mg = (E Fj Then M is

SP-injective.

- (0 F — (00 —(F F - (0 F - (00
Proof. WehaveonIyAl—(O oj’Az_(o Fj,Ag—(O oj’A“_(o F),AE,_(O oj’

and Ag = [~ T | are right ideal of R, and we see that only A; = (% | is only the
0 F 00

nonzero small principal right ideal of R because for every Ajc R, 2<i<5, Aj #R then

A+A; = R. Since, for each x = (0 bje (O FJ:Al, (0 Xj (F Fj=(° Fj, i.e., XR=A;
00) oo 0oo0)lo F) (oo

A; is a principal right ideal of R. Let ¢: A;— M be an R-homomorphism. Since

(8 éj € Ay, there exists x11, X2 € F such that (0{[0 1)] = (Xﬂ X(l)zj' Then (p[(g éjj

o035 2)

ol alles) = (3 w6 = (%) ™ (3 %)

0 x 1IN 81 )| _ [ Xpdy Xpdp
(0 (1)2) S0 X11= 0. Define (p R M by go[[o azz]] [ 0 0 J for every

(aﬂ aleeR. To show that ¢ is well-defined. Let [a“ a”}, [b“ %2 e R such that

0 ay 0 a3) (0 by
ap ap| _ by by an A)| - [Xlzail X12a12J - {Xl by by J =
[ 0 azz) { 0 bzz}. N 2 [( 0 azzn N? o o

m

(ﬁ([bél EZD To show that ¢ is an R-homomorphism. Let [aél :Z] [bél Elzj

+

F Fj and (rl r2] e R. Then goHaﬂ alz][g Z] +

3

5

~ (8l 8yl ta,h
0 by,

Al

0 a22 r3 +b22 0 0

[ H - (P ((anrﬁbn al1r2+a1zr3+blzj] — (Xu (ayh +byy) X1 (Ap, 1y +b22)j

XlZallrl + X0y X850 + Xlzbzzj - (Xlzallq X282 rs) + (Xlell Xlzbzzj

0 0 0 0 0

(i IR (i ] (i R (B
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Sl (a1 @12 nn b, by ~ 0 x
o [[ 0 azzj][o rsj (0 ([ 0 bzzjj- To ShOW that QL= . Let [0 OJ c Al- Then

2 U e B 9 R R (A

- (D[[O 1){0 0] _ (( XD This shows that ¢ is an extension of ¢. Thus M is
0 ONO x 00

SP-injective. O

3.1.4 Proposition. Let M be { M;,i € |} be a family of right R-modules. Then
the direct product HI Mi; is SP-injective if and only if each M; is SP-injective.
le

Proof. (=) Let {M;,ie |} be a family of right R-modules and the direct product

_HI M; is SP-injective. Let i € |, we must show that M; is SP-injective.Let a e R, aR «
le

R and let ¢ : aR — M; be an R-homomorphism. Let 7z and ¢, for each i € I, be the i-th

projection map and the i-th injection map, respectively. Since HI M; is SP-injective,
le
there exists an R-homomorphism ¢ : R — HI M; such that ¢ = @ where::aR — R
le

is the inclusion map. Thus 7 @1 = m@@, S0 by Definition 2.6.2, 701 = . Thus @ is
an extension of ¢.

(<) Let Mjis SP —injective. Letae R, aR < Rand let ¢: aR — H| Mi; be an
le

R-homomorphism. Let 7 be the i-th projection map. Since, for each i, M; is SP-
injective, there exists an R-homomorphism «; : R — M; such that 5@ = ot where 1 :
aR — R is the inclusion map. Then by Definition 2.6.5 and Proposition 2.6.6, we obtain

qB: M — HzNi such that ﬂigBZ o; for each i € I. Then mqﬁz = a1, SO M@ = o1 =
i€

m@1. Hence mo= m@foreachi e I. Therefore p= ¢ 1. O

3.1.5 Lemma. Let M; (1 <'i <'n) be SP-injective modules. Then & M, is SP-
I=1

injective if and only if each M; is SP-injective.
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Proof. (=) Assume that M; (1 <i <n) be R-modules and
I_

M. IS SP-injective. Let i
=1 I

€ |, we must show that M; is SP-injective. Leta € R, aR <« Rand let ¢: aR — M; be
an R-homomorphism. Let 7 and ¢; for each i € I, be the i-th projection map and the i-th

injection map, respectively. Since §
I,

=1

M.is SP-injective, there exists an R-
|

homomorphism @: R — {
|7

=1

Misuch that @1 = ¢ where 1 : aR — R is the inclusion

map. Thus z ¢ 1 = m@iep, so by Definition 2.6.2, g1 = ¢. Thus 7 is an extension of

@.

(<)LetaecJR)and p:aR — 3 M. be an R-homomaorphism. Since for each
==

I € {1, 2,3, ..., n}, Mjis SP-injective, there exists an R-homomorphism ¢;: R — M;

such that ¢ : = @ where 7 is the i-th projection map from J
I,

=1

M, to Miand::aR —R

is the inclusion map. Set @ =11 + @+ ... + wein : R — &\ where 50 Mi — & .
i= I i=1 !

1

for each i € {1, 2, 3, ... , n} is the i-injection map. We must show that ¢ is an
extension of . Let a(r) € s(R). Then ¢ i(a(r)) = ¢ (a(r)) = nei(a(r) + ne(a(r)) + ... +
mgn(a(r)) = eu(@(r)) + @(a(r) + ... + gu(alr)) = eua(a(r)) + @z(a(r)) + ... + ghn(a(r))
=me(a(r)) + me@r) + ... + mealr)) = (m+tmt...+tm)ealr)) = o@a(r)).

Then 3
I_

=1

M, is SP-injective. O

3.1.6 Lemma. Any direct summand of SP-injective module is again SP-

injective.

Proof. Let M be an SP-injective module and let A be a direct summand of M. To show
that A is an SP-injective. Let a € R, aR « R and let ¢:aR — A be an R-

homomorphism. Since M is SP-injective, there exists an R-homomorphism ¢: R — M
such that aip =¢ 1 where 1 : aR — R is the inclusion map and « : A — M is the injection
map. Let 7 : M — A be the projection map. Then zag = ngz. Hence by Definition

2.6.2, = @1. Then z¢is an extension of ¢. O
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3.2 SP - injective Rings
If Rr is an SP-injective modules, then we call R is a right SP-injective ring. In

this section, we give some properties and characterizations of SP-injective rings.
3.2.1 Lemma. [12] The following conditions are equivalent for a ring R

(1) R is right SP-injective ring.

(2) Ir(a) = Raforany a € J(R).

(3) r(a) < r(b), wherea € J(R),b € R implies Rb — Ra.
(4) I(r(@) N bR) =I(b) + Ra foralla € J(R),b € R.

(5) If : aR— R, a € J(R), is an R-homomorphism, then «(a)e Ra.
3.2.2 Theorem. Let R be a right SP-injective ring. Then

(1) Ir(Ra) = Ra, forany a € J(R).
(2) If aR ®bR and Ra & Rb are both direct, a,b € J(R), then I(a)+1(b) = R.

Proof. (1) Let R be a right SP-injective ring and let a € J(R). To show that
Ir(Ra) = Ra.(>) Letra € Ra. Toshowthatra € Ir(Ra).Let s e R,andRas=0.
Thenras=0and hencera e Ir(Ra). (c)Letx e Ir(Ra) . Define ¢p:aR —> xR by
p(ar) =xr, for every reR. To show that ¢is the function. Let ar = 0 then
¢(ar) = xr = 0. This shows that ¢ is well-defined. Let ar;, ar, € aR and re R. Then
p(arir + arp) = g(a(rir + ry)) = x(rir + rp) = xrir + xrp, = g(ary)r +¢ (ary). This shows
that ¢ is an R-homomorphism. Since R is a right SP-injective ring. Then there exists

@ : R —R an R-homomorphism, such that i;¢ = @i, where i; : xR - R and i, : aR — R

are the inclusion maps. Then x = p(a) = @ (a) = ¢ (1.a) = ¢ (1)a € Ra.

(2) Let R be a right SP-injective ring, a, b € J(R) and let aR ®bR and Ra ®@ Rb
are both direct. To show that I(a)+I(b) =R. Define ¢: (atb)R - R by ¢(a+b)r =
br, foreveryre R. To show that ¢ isthe function. If (a+b) =0, then ar =

bre aR NbR =0so br=0. Then g(a+b)r = br = 0. This shows that ¢ is well-defined.
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We now show that ¢ is an R-homomorphism. Let (a+b)r;, (a+b)r, e(a+b)R and r eR.
Then ¢((a+b)rir + (a+b)ry) = g((@+b)(rir + r2)) = b(rir + rp) = brir + br, = p(a+b)rir +
¢(a+b)r,. This shows that ¢ is an R-homomorphism. Since R is a right SP-injective,
there exists an R-homomorphism ¢ : R —R such that ¢ = @i where i : (a+b)R — R is
the inclusion map. Hence ¢ (1)(a+b) = ¢ (1.(a+b)) = ¢ (a+b) = p(a+b) = b so ¢ (1)
(a+b) =b. Then ¢ (1)a+ ¢ (1)b = b, and so ¢ (1)a = b-¢ (1)b =(1-¢ (1))b eRa NRb
= 0. Then ¢ (1) € I(a) and (1-¢ (1)) €l(b). Hence 1 = @ (1) + (1-¢ (1)) € I(a) +I(b).
Then 1 e I(a)+ I(b) so I(a)+ I(b) = R. 0

3.2.3 Proposition. If R is a right SP-injective, so is eRe for all € = e eR

satisfying ReR = R.

Proof. Let R be a right SP-injective and e be an idempotent sastisfying ReR = R. Write
S=¢eRe. Leta € J(eSe) and let ¢ : aS — S be an S-homomorphism. To show that r(a)
c r(p(a)). Let x € r(a). Then ax = 0. Hence ¢(a)x = ¢p(ax) = ¢(0) = 0. This shows that
r(@ c r(e(a)), so Irp(a) < Ir(a) by proposition 2.3.2 (3). Since a(eRe)R = ae(ReR) =
aeR = aR. Since aSR < JR K R, aSR « R, so aR « R. Then by Lemma 3.1, Ir(a) = Ra.
It follows that Rp(a) < Ir(p(a)) < Ir(a) = Ra. Then ¢(a) = ep(a). Since p(a) = 1rp(a)
eRp(a) c Ra, p(a) € Rasoep(a) € eRa. Then p(a) = ep(a) € eRa = eRea = (eRe)a, so
p(a) = sa for some se S. Define ¢:S —Sby @ (t) =stforeveryteS. Lett;, t, €S
such that t;= t,. Then st;= st,. Hence ¢ (ty) = st;= st = ¢ (t,). This shows that ¢ is
well-defined. Letty, t,e S andt € S. Then @ (tyt+ tp) = s(tyt+ t) = styt+st, = @ (t)t +
@ (t2). This shows that ¢ is S-homomorphism. To show that ¢ = @i. Let at € aS.
Then gat) = p(a)t = sat = @ (@)t = ¢ (at) =g i(at). Hence eRe is right SP-injective.

0
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3.2.4 Theorem. Let R be right SP-injective, a € R and be J(R).

(1) If bR embeds in aR, then Rb is an image of Ra.
(2) If aR is an image of bR, then Ra embeds in Rb.
(3) If bR = aR, then Ra =Rb.

Proof. (1) Let f : bR— aR be an R-monomorphism. Since R is right SP-injective,
there exists an R-homomorphism 7: R — R such that f = fi; where ;1 : bR
— R and 1, : aR— R are the inclusion maps. Define o : Ra — Rb by
o(sa) = sf(b) foreverys e R. If sa =0, then o(sa) = sf(b) = sf(b) e s(ar) =
(sa)R = 0. To show that Im(/b) = Im(a). This shows that o is well-defined. To show
that o is a left R-homomorphism. Let s1(a), sz(a) € Raand v € R. Then o (vs;a + Sa) =
o ((vs1 + $p)a) = (Vs1+Sy) /b = vsy fb+ S, /b = v(s1/b) + So/b = vo(s1a) + o(s,a). To
show that o is an R-epimorphism. Let kb € Rb. To show that r( (b)) < r(b). Let x
r( 7 (0). Then f(b(x)) = 0, so f(b(x)) = f(b(x)) = 0. Since f is monic, bx = 0. Then x e
r(b) and hence Ir(b)  Ir( 7 (b)). Since bR «< R and f : R — R is an R-homomorphism,
f(b)R«K R by Proposition 2.2.4. Since R is SP-injective, Rb — R fb by Lemma 3.2.1.
Then b=1-b=s /b for some s e R. Hence there exists ksac Ra such that kb = o (ksa).

(2) Letf: bR — aR be an R-epimorphism. Since R is SP-injective, there exists
an R-homomorphism f : R — R such that f = fi; where ;1 : bR— R and
1, : aR— R are the inclusion maps. Define o : Ra — Rb by o(sa) = sf(bx) for
every seR. It is clear that o is a left R-homomorphism. Let sa €
Ker(o). Then 0 = o (sa) = s £ (bx) = sf(bx) = sa =0.

(3) Follows from (1) and (2) 0

Following[1], a ring is R semiprimitive in case J(R) = 0.
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3.2.5 Proposition. The following conditions are equivalent for a ring R:
(1) R is semiprimitive.
(2) Every right R-module is SP-injective.
(3) Every principal right ideal is SP-injective.
Proof. We only prove the right side, the left side is analogously. It is ovious that (1) =
(2) = (3). We show (3) = (1). Suppose J # 0. Then there exists a nonzero element a
J(R).Then by assumption, the inclusion map from aR to R is split. Then aR is direct

summand of R so aR = 0 which is contradiction. []

3.2.6 Theorem. The following conditions are equivalent for a ring R:

(1) Every small and principal right ideal of R is projective.
(2) Every factor module of an SP-injective module is SP-injective.

(3) Every factor module of an injective R-module is SP-injective.

Proof. (1) = (2) Let M be an SP-injective module, X a submodule of M. To show that
M/X is an SP-injective. Let a € J(R) and let ¢ : aR— M/X be an R-homomorphism.
Since aR is projective, there exists an R-homomorphism « : aR — M such that ¢ = na
where r7: M — M/X is the natural R-epimorphism. Since M is SP-injective, there exists
an R-homomorphism f: R — M such that o = S where : : aR — R is the inclusion
map. Then ¢ = na = nPi. Therefore npB is an extension of ¢ . Thus M/X is an SP-
injective.

(2) = (3) Let M be an injective R-module and X be a submodule of M. It is clear that an
injective R-module is an SP-injective module, so M is SP-injective. Then by (2), M/X is
an SP-injective.

(3) > (1) Let aR « R, y: A — B be an R-epimorphism and let ¢ : aR— B be an R-
homomorphism. Let E be an injective R-module and embed A in E by Proposition 2.5.4.
Since yis an R-epimorphism, by Proposition 2.4.4, there exists an R-isomorphism o :
A/Ker(y) — B such that y = om where 7 : A — A/Ker(y) is the natural R-
epimorphism. Then by Proposition 2.1.15, we have o ': B — A/Ker(y) is an R-
isomorphism, so B =A/Ker(y) and A/Ker(y) is a submodule of E/Ker(y). By
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assumption, there exists an R-homomorphism ¢ :M—E/Ker(y) such that 1,0~ Lo =
gB 1, Where 11 : A/Ker(y) — E/Ker(y) and i, : aR — R are the inclusion maps. Since R is
projective, there exists an R-homomorphism g : R — E such that @ = 7, where
7, : E — E/Ker(y) is the natural R-epimorphism. Then @1, = 7,81,. Hence 1,0” Lo
= @i, = P It follows that no ' ¢ = nS1. To show that S(aR) < A. Let a(r)
e a(R). Then uo ™' p(a(r) = mPu@m) = nA@() = n(B@() = A(a() +
Ker (). Hence 110" ¢ (a(r)) = o ¢(a(r)) =a + Ker(y) for some a € A, so S(a(r)) +
Ker(y) =a+ Ker(y). Thus g(a(r)) —a € Ker(y). It follows that g( a(r)) = (S(a(r)) -
a) +a e Ker(y) + A= A. To show that ¢ = 8. Let a(r) € a(R). Then 110" * p(a(r)) =
o™ p(a(r) = mpu@r) = nA(a(r). Hence no™* p(a(r) = nA(a(r)) = B a(r)) +
Ker(y), so 1o p(a(r)) = B a(r)) + Ker(y). Since y is an R-epimorphism, ¢ ( a(r)) =
7@@) for some a € A. Thus no *p(a()) =uoc 'y @) = o 'y(@) =m@ =a+
Ker(y). It follows that g( a(r)) + Ker(y) = a + Ker(y). Then g(a(r)) — a € Ker(y).

Hence y(5(a(r)) — a) = 0, so yB(a(r)) = y(a) = ¢(a(r)). Thus yB(a(r)) = ¢(a(r)). This
shows that £ lifts . 0

3.2.7 Proposition. Let R be right SP-injective and b; € J(R), (1 <i < n).

(1) If Rb; @ ... ® Rb, is direct, then any R-homomorphism « : biR + ... +
bR — R can be extended to R.
2)Ifb; RD...® byRis direct, thenR(b; +... + by) = Rb; +... + Rb,.

Proof. (1) Let Rb; ©...® Rb, is direct and let « : bR + ... + bR — R be an R-
homomorphism. Since R is SP-injective, for each i, 1<i<n, there exists an R-
homomorphism ¢; : R — R such that a(bir) = @i(bir) for every r € R. Since bj(R) <« R
for each i =1, 2, ..., n, X, b.(R) < R by Proposition 2.2.3(2), and we have
(™, b)(R) c X, b,(R) which implies (X, b,)(R) < R by Proposition 2.2.3(1).
Since R is SP-injective, there exists an R-homomorphism ¢ : R — R such that, for any

reR, ¢(Zkyb)(r) = a(Zk, b)(r). To show that T, ¢(b,)= I, ¢.(b,). Letr € R.
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Then XL, @ b, (1) = @1ba(r) + @aba(r) + ... + @nabn(r) = abi(r) + aby(r) + ... + abn(r)
=(ab1+ aby + ... + abn)(r) = afby +hy + ... + b)(r) = a(Z%, B,)(R) = ¢ (£, b.)(R)
= by + bz + ...+ bo)(r) = (gba + ¢z + ... + ghn)(r) = @ba(r) + ¢a(r) + ... + @bn(r) =
7oy @b; (r). This shows that X7, @(b;) = Xi, @, (b;). Then (@p1bi— bi) + (@2bo—
oby) + ... + (@nbh— @by) = 0. Thus (@1— @)by + (@2— @)b + ... + (@n— @)b, = 0.
Since Rb; @ Rb; @ ...® Rb, is direct, (p1— @) = (p2— @) = (pn— @) = 0. Then by
Proposition 2.6.8, (¢1— @)b1 = (p2— @) = ... = (¢n— @)by = 0. Hence (pi— @)b; =
0, forall 1<i<n.Thus @i(bj)=¢ (bi), forall 1<i<n.Toshow that = ¢:. Let
bi(x1) + ba(x2) + ... + ba(Xn) € b1(R) + ba(R) + ... + by(R). Then a(bi(xq) + ba(x2) + ...
+bn(Xn)) = abi(X1) + aba(X2) + ... + A (Xn) = @1b1(X1) + @2b2(X2) + ... + @nbn(Xn) =
pbi(x1) + @ba(Xz) + ... + @bn(Xn) = @(ba(x1) + ba(Xz) + ... +bn(Xn)) = @1(b1(x1) +
ba(X2) + ... + bn(xn)). Hence a(bi(x1) + ba(Xz) + ... + bn(Xn)) = @u(bi(x1) + ba(x2) +
... + bn(Xn)). This shows that ¢ is an extension of «.

(2 (o) Let ayby + b, + ... + b, € Rby + Rby + ... + Rb,. To show that
b1+ by + ... + anb, € R(by + by + ... + by). For each i, define @i : (by + byt ... +
bn)R — R by @i((b; + by + ... + by)r) = bir for everyr e R. Let 0 = (by + b, + ...
+bp)(r) € (by + by + ... + by)R. Then by(r) + ba(r) +...+ by(r) = (by + by + ... + by))R = 0.
Since bR @ bR @ ... @ byR is direct, bir = bor = ... = byr = 0 so bjr = 0. This shows
that ¢, is well-defined. Let (by + b + ... + bp)ry, (b1 + b+ ... + b)) e (b1 + b+ ... +
bn)R. Then @i((by + by + ... + by)(ry)r + (by + by + ... + by)(r2)) = @i((by + by + ... +
b)(rir + 12)) = bi(rar + rz) = bi(rir) + bi(rz) = bi(r)r + bi(r2) = @i((by + by + ... +
br)(r1))r + @i((by + by + ... + by)(r2)). This shows that ¢; is an R-homomorphism. By
the similar proof of (1) we have (b; + by + ... + by)R < R. Since R is SP-injective, there
exists an R-homomorphism ¢, : R — R such that i = ¢, 1 where:: (by + by + ... + by)R
— R is the inclusion map. Then bj = @i(bs + by + ... + by) = @ (by + by + ... + by) €
R(b; + by + ... + by). Hence aibi = i, (b1 + by + ... + by) € R(bs + by + ... + by) S0

b1+ b+ ..+ b= (b + b+ .+ b))+, (b b+ b))+ L+

g, (br+by+ ... +b)=(ap + @+ ... + @, )by + b+ ... +by) e R(by + by +
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..+tby). (c)Leta(by+by+ ... +by) e Rby + b+ ... +Dby). Then a( by + by + ... +
by) = aby + aby + ... + ab, € Rby +...+ Rby. 0

3.2.8 Proposition. Let R be right SP-injective and B;®...® B, a direct

sum of small(two — side) ideals of R. Then for any fully invariant ideal A of R, we have
AN (B1 ®..®By)=(ANBy) &...® (ANBy).

Proof. (o) SinceA N Bic AN (B1®...® By) foreachi =1, 2, ..., n, we have

(ANB) ®@.®A NB) c AN (B,®..®B,). (<) Lleta=3" b AN

n b e (AN B) ®@.®& (AN By Let x :
< n), Rbjc Bj. Thus

(B1®...® Bp). To show that

® _ bR— bR be the projection map. Since for each i, (1 < i
& :’ (Rb, is direct. By Proposition 3.2.7, 7 has an extension 7, : R — bR such that 7z
= m i where:: & lebeﬂ — R is the inclusion map. Let r; € R. Then b; = 527, b, =
.+ by e

n

AaXt. b, =7 (Xh,b) = #(a) € AN B;. Hence I b= by + b, + ..
[

ANB1®ANB;® ... ® AN By.
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Abstract

Let  be a ring. A right B- moodule M s called small principally injective
(briefly, 8P —imective] if, every H-homomorphism from a small and principal vight ideal
aft to M can be extended to an f-homomorphism from £ to M [11]. A ring /& is called
right SP—injective if, B is SP-injective, In this paper, we give some characterizations
amd properties of small principally injective modules and small principally injective rings

Keywords: Professional Erhics.

1. Introduection

Thromghout this paper, & will be an associative ring with identity and all modules are
unitary right F-modules. For might B-modules M snd N, Homg{ M, N) denotes the set of
all R-homomorphisme from M to N oand 5 = Endg (M) denotes the endomorphism ring of
M. B}.‘ notations, N l‘fa J‘J N =* M. and N = M we mean that N iz a direct stimmand,
an essential submodule and & superfinous submodule of M| respectively, We denote the socle
and the Jacohson vadical of M by SeclA) and J{M), respectivelv.

Let B he ating, A right B-modnle A is ealled principaly fnjective (or P-injective], if
every H-homomorphism from a principal right deal of £ to M can be extended to an f-

homomorphism from & to M, Equivalently, {neele) = Ma forall a = &, where [ and r are
the left and right annildlators, respectively, This notion wag introduced by Camillo [2] for
commutative rings. In (7], Micholon and Yousif studied the structuwe of principally injective
rings and gave some npplications. They also continued tostudy rings with some other kind
af injectivity, namely, mininjective rings (8. A ring | i8 called right mininjective if every
isomorphism between simple right ideals is given by left modtiplication by an clement of 1,
Equivalently, if ki & simple, & < R, fe{k] = Bk In [11], LV, Thuyet, and T C. Quynh,
introduced a small principally module. A right fi- module M is called smell principally
injective for 8 P—injective) if, every R-lomomorphism from a small and principal right
ideal aff to M can be r?{thrdﬂl.l toan K-homornorphism from [ to M, In this paper we also
consider emall principally injective madules and rings.

Following [1). a submodule K of a right B-module A s superfluous {or small] in M,
abbreviated K = M, in case for every submodule L of M, K + L = M implies L = M, It
ie clear that «ff < R if and only if a £ J(H).

=''IZ:',:|:1'l't;!{-.p«a:ndil.‘-,g author: E-mail: kitticak am(01 = email com, woamo@hotmail com
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1. 3P-injective Modules

Definition 2.1. [11] Let B be o ring. A right B- module M is called small préncipally

ingective (briefly, 5P —injective) if, every f-homomorphism from a small and principal right
ideal af? to M can be extended to an B-homomorphism from R to M.

Lﬂ]lllllﬂ 2.2. Lr:! J” he ] r‘:!'ﬂ.ll.'t R-'rn.DdUIr:. TIIM.'I‘.' ﬁur a5 SP—rrbilf‘:.!:'.:-'f: :'rf 4|::|.'|:.f Wt!y tf |>1,'|:r'h
a < J(R), Iyrgla)l = Ma.

Proof. Clearlv, Mo < lyrple). Let o = lyrplae). Define o : ol — o/ by @lor) =
o, for everv v £ R, Sinee rpin) © vglr), ¢ i welldefined so it is clear that 4 is an
R—homomorphism. Sinee M 13 SP-injective, there exists an B homomorphism @ - B — M
such that @i = 1y, where 1 2 — M and &2 : afl — R are the inclusion maps. Then
r=ple] =31a c Ma.

Conversely, let a ¢ J(R), and let ¢ : afl — M be an B—homomorphismn.  Then
wla) £ Lyrrrlal, s0 by assumption, we have wa) = ro for some © £ M. Define & : B — M
by @lr) = xr every v & . It I8 clear that 2 s an B-homomorphism and is an extension of
W o

Example 2.3, Let A= {‘rl ;’j wuhere Fasa field, and Mg = I'LII I‘T]. Then M is SP—injective.
Proof, It s cleae that only o e lf1i|| 1;:' i the nomsgere sl prineipal vight §deal u!' It Lat
0% ae A Then rgla) = l:!ll_l #] w0 {yyrla) = {Ilir {;} It is obwicus thet Ma = ['lll ,r'lj Then
by Lemma 2.2, M iz S5 P—injective, ]

Proposition 2.4. Let {M; i e T} be o fomily of vight R-modiles, Then the direct produet
Micr Mi is SP-injective if and only if cach M; is SP-injective.

Proof. Let m; and oo, for each ¢ € I, be the ith projection map and the ith injection map,
respectively. We now let i & T, o € J{R), and let 2 ot — M be an B—homomorphism.
Then by assumption, there exsts an A—homomorphism @ - 8 — M; sach that & =
i where & @ el — R is the inclusion map. Thus » = 5. Conversely, let @ < J{R)
and ¢ @ alt — T]io; My be an f-homomorphism. Then for each ¢ © 1, there exists an
B—homomorphism ey ; B — M such that o = 700 where 2 all — R i= the inclusion
map. Hence we obtain [product) & @ B — [l;op My with m7 = oy and 735 = age which
implies Gi = . O
Lemma 2.5. Let M (1 <§ < n) be SP-injective modules, Then L M, is SP-injective.

Proof. It is enough to prove the reanle for v = 2, Let a € J(R) and ¢ off — M & Mo be
an f-homomorphism. Sinee 1y and My are SP-mnjective, there exists an B-homomorphisms
w1 i — My oand gee's = My such that e = 719 and o =7 where 71 and o are the
projection maps fromn N 5Nz to N and Na, respectively, and ¢ @ a8 — R i=s the inclusion
map. Sect § = o +epgs o B— M@ My, Thus it is clear that & extends . O

Lemima 2.6. Any direct summand of an SP-imective module s again SP-injeckive.

Proof. By definition. m]
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3. 5P-injective Rings
If Ry is an S P-injective module, then we call & is a right SP-injective ring, In this
sectlon, we give some properties and charscterizations of SP-injective rings.
The following lemma fallows from Lemmea 2.2,

Lomma 3.1, Led B be o ving. Then B ax rght SP-ingective if and only of each a = J{R),
Ir(a) = Ha,

Theorem 5.2, Lef i be o right SP-ingective ring. Then

(1) R i r‘:r,l.ii'i' :lr|.E.|.':ltl_'iie-r'i'1."r.~r,
(2) Ir{fa) = Ra, for anya = J(R),
(3) IfaRa bR and Ra & RBb ere both divect, a, b £ J{R), then l{a) + (b)) = R.

Proof. (1) Sinee every simple right ideal of i 15 either nilpotent or a direct swmowsad of
B[4, (10.22) Braver’s Lemma], each right 8P —injective ring = right mininjective ring.

(2) Let # € e Ra), Define @ aR — cR by @lor) = xr for every v € R, Since ar =0
implies & = 0,  ia well-defined . It is clear that ¢ 1= an B—homomorphism. Sinee / i= right
SP-imjective, there exists an extension @ : ! — B of . Henee r = pia) = @(l)a € Ra.
This showa that {r{Ra) © Fa. The inclusion Ra © el Ra) i= always holds.

(3] Defime 5 {a + 8 — R by wla +b)r = b for cvery m € B If {a+ by = 0, then
ar = br € all M LR = 0 so ke = 0. This shows that o is well-defined. It is clear that » is
an fi—homomorphism. Then there exists an extension & : @ — R of . Henee S(1(a + &)
= a+b] =bse@lle = (1—S(1))b ¢ Ranflb=10. Then &1} £ l[a) and [1—&(1]} = {[&).
Henee 1 = 13+ 01 = G(1)) € Ha)y+ I(b). It follows that I(s] 4+ b)) = R. |

Proposition 3.8, If [ s right SP-injective, so s elle for oll ¢2 = ¢ & R satisfying
Rell= R,

Proof. Write £ = efle and Iet 7 0 0S8 — 5 be an §F—homomorphism, where 2 £ J{5].
Then rin) o riglal) so drie{al) = Iria). SneeaSR =eefle B = oel = afl and oS < R,
alt = R Then by Lemuna 3.1, lrja) = Re. It follows that Bio{a) < Ie2(a)) C lrfa) = Ra.
Then @la) = epia) € efia = (efele = 5a sa o] = sa where s & 5, Define & 5 — §
by Z(1) = sf, for every t € 8. It iz clear that & iz an 5—homomorphism. Then for each
af € af, wlat] = sat = FHat). Hence efe s right SP-injective, o

Theorem 3.4. Let B be right SP-imective, @ = i and b £ J(R).

(1] .{irf-'R embeds in o, then Bh is an irnage of Ha.
(2] If ali iz an image of bR, then Ra embeds o BE.
(3] I[fbR ~ al, ther Ao~ Rb.
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Proof. (1) Let f: bR — al! be an R—muturumt‘p]l.ibu|.. Let 1y : bR — R and ip: R — R
lgu:! the melusion maps. Sinee E is right SP-injective, there exists an R—]]U_!:llu]luﬂ]l!lj.‘i]ll
.f - i — R such that .'-_»‘F =S j".'-|. Let o 3 Ba — A defimed H}' n'[srl'l — .ﬁJI'I:F.III for every
g2 € B If sa = 0, then o{sa) = _uf“_.:- = af(b) = s{aR) = (sa)R = 0. 'I_U]Li:s shows that o
is well-defined, It is clear that ¢ s an R—homomorphism, Note that ()R < B by 1,
]_11|j|||e1 512‘] ]'I'l Ay & ¢ :?, _Il"l'nli_lﬁ =1 i||||:-|'iu-\. r|"|h-.-s] =Narhs =10 ||<'|':|I'|:-\.|' T is momic,
Consequently, .l'l:_,I:[fJ]'I rib) and henee Ir{{b) I.r[_;l:-: b33, Then by Lemma 3.1, Bh R,I:[ll].
Thus b ¢ J‘i‘_i'-:b] and ao b= i_f[h] = |50,

[2) By the same notations as in (1), let f: bR — af be an R—epimorphism, Sinee
R be oght SP-injective, Ff ean be extended to f: R — R such that wf = fuy. Wt
o= flhe) = _II".:|',_,.-:._ x & R Define o : Ho — Rbby ofsa) = hj”.".l i for EVELY & ¢ BTt is clear

that & is an R-homomorphism. If sao £ Keris), then | = sisa)l = sf(br) = sf(br) = sa,
Henee o is an B—monomorphism.

(3} Follows from (1) and (2).

Follorwing |]| a nng 15 i seraprimative in case J{R) = 0.

Proposition 3.5, The follounng conditions are cquevalent for a ring f:

(1) R is semiprimitive.
(2) Every righf R—module 25 §P—injecfive,

[3) Ewery principal right ideal is SP—ingective.

Proof. (1j=(2)=(3} is clear,

(3}=(1) Suppose J # 0. Then there exists a ponzero element o € J{R), Then by
assumpiion, the nclusion map from alf to £ 18 split. Then alt s a divect summand of B
en all = 0 which i a contradiction. (]
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