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     ABSTRACT  
 

The purposes of this thesis are (1) to study properties and characterizations of 

small principally injective modules, (2) to study properties and characterizations of 

small principally injective rings, and (3) to find some relations between small 

principally injective modules, small principally injective rings and projective modules.   

Let R be a ring. A right R-module M is called principally injective if every R-

homomorphism from a principal right ideal of R to M can be extended to an R-

homomorphism from R to M. A right R-module M is called small principally injective if 

every R-homomorphism from a small and principal right ideal of R to M  can be 

extended to an R-homomorphism from R to M. R is called a right small principally 

injective ring if  R R  is a small principally injective module. 

The results were as follows. (1)  Let R  be a right small principally injective 

ring. Then (1.1) ( )lr Ra Ra=  for any ( ).a J R∈  (1.2) If aR bR⊕ and Ra Rb⊕ are 

both direct, , ( ),a b J R∈  then ( ) ( ) .l a l b R+ =  (2) Let R  be right small principally 

injective , a R∈  and ( ).b J R∈  (2.1) If bR  embeds in aR , then Rb  is an image of Ra .  

(2.2) If aR  is an image of bR , then Ra  embeds in .Rb  (2.3) If ,bR aR≅  then 

 (3) The following conditions are equivalent for a ring R : (3.1) every small 

and principal right ideal of R is projective; (3.2) every factor module of a small 

principally injective module is small principally injective; (3.3) every factor module of 

an injective R -module is small principally injective. (4) Let R  be right small 

principally injective and ( ),ib J R∈  (1 i n≤ ≤ ). (4.1) If  1 ... ,nRb Rb⊕ ⊕ is direct, then 

any 1: ... nRb Rb Rα + + →  can be extended to R . (4.2) If  1 ... nb R b R⊕ ⊕  is direct, then 

1 1( ... ) ... .n nR b b Rb Rb+ + = + +  

Keywords: principally injective rings, small principally injective rings 
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CHAPTER 1 

INTRODUCTION 

 

In modules and rings theory research field, there are three methods for doing 

the research. Firstly, to study about the fundamental of algebra and modules theory over 

arbitrary rings. Secondly, to study about the modules over special rings.  Thirdly, to 

study about ring R by way of the categories of R-modules. Many mathematicians have 

concentrated on these methods. 

 

1.1 Background and Statement of the Problems 

Many generalizations of the injectivity were obtained, e.g., principally 

injectivity and mininjectivity. In [2], V. Camillo introduced the definition of principally 

injective modules by calling a right R-module M is principally injective if every R-

homomorphism from a principal right ideal of R to M can be extended to an R-

homomorphism from R to M. In [7], Nicholson and Yousif studied to the structure of 

principally injective rings and gave some applications of these rings. A ring R is called 

right principally injective if every R-homomorphism from a principal right ideal of R to 

R can be extended to an R-homomorphism from R to R. In [12], L.V. Thuyet, and T.C. 

Quynh introduced the definitions of a small principally module. A right R-module M is 

called small principally injective if every R-homomorphism from a small and principal 

right ideal aR to M can be extended to an R-homomorphism from R to M. In [10], N. V. 

Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai introduced the definitions of quasi 

principally injective modules. A right R-module M is called quasi-principally injective 

if every R-homomorphism from an M-cyclic submodule of M to M can be extended to 

M.   

 

1.2 Purpose of the Study 

In this thesis, we have the purposes of study which are to extend concept of 

the previous works and to generalize new concepts which are : 

1.2.1  To extend the concept of  principally injective rings. 

1.2.2  To generalize the concept of  small  principally injective modules. 
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1.2.3  To establish and extend some new concepts which are dual to small 

principally-injective rings and small principally-injective modules. 

 

1.3  Research Questions and Hypothesis 

We are interested in seeing to extend the characterizations and properties 

which remain valid from these previous concepts which can be extended from 

principally injective rings, principally quasi-injective modules [9], and small -injective 

rings [12]. In this research, we give characterizations and properties of these modules. 

A right R-module M is called small principally injective if every R-homomorphism 

from a small and principal right ideal aR to M can be extended to an R-homomorphism 

from R to M. If RR is SP-injective modules, then we call R is SP-injective rings. In this 

research we give some properties and characterizations of SP-injective modules and SP-

injective rings.    

 

1.4  Theoretical Perspective 

    In this thesis, we use many of the fundamental theories which are concerned to 

the rings and modules research. By the concerned theories are : 

    1.4.1  The fundamental of algebra theories. 

    1.4.2  The basic properties of rings and modules theory. 

 

1.5  Delimitations and Limitations of the Study 

For this thesis, we have the scopes and the limitations of studying which are 

concerned to the previous works which are:        

1.5.1  To study properties and and characterizations of SP-injective modules. 

    1.5.2   To study properties and and characterizations of SP-injective rings. 

 

1.6  Significance of the Study    

    The advantage of education and studying in this research, we can improve and 

develop the concepts and knowledge in the algebra and modules research field. 



 

 

CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter we give notations, definitions and fundamental theories of the 

modules and rings theory which are used in this thesis. 

 

2.1 Rings, Modules, Submodules and Endomorphism Rings 

This section is assembled summary of various notations, terminology and 

some background theories which are concerned and used for this thesis. 

2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary 

operations + and •, called addition and multiplication (also called product), 

respectively, such that 

  (1)  ( R, +) is an additive abelian group.  

 (2)  ( R, •) is a multiplicative semigroup.    

  (3) Multiplication is distributive (on both sides) over addition; that is, for 

all a, b, c ∈ R, a•(b + c) = a•b + a•c  and (a + b)•c = a•c + b•c.   

  The two distributive laws are respectively called the left distributive law 

and the right distributive law.        

 A commutative ring is a ring R in which multiplication is commutative; 

i.e. if a•b = b•a for all a , b ∈ R. If a ring is not commutative it is called 

noncommutative. 

         A ring with unity is a ring R in which the multiplicative semigroup ( R, •) 

has an identity element; that is, there exists e ∈ R such that ea = a = ae for all a  ∈ R. 

The element e is called unity or the identity element of R. Generally, the unity or 

identity element is denoted by 1. In this thesis, R will be an associative ring with 

identity. 

2.1.2 Definition. [14] A nonempty subset I of a ring R is called an ideal of R if 

   (1)  a, b ∈ I implies a – b ∈ I.     
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    (2)  a ∈ I and r ∈ R imply ar ∈ I and ra ∈ I. [14, C10]  

     2.1.3 Definition. [13] A subgroup I of ( R, +) is called a left ideal of R if RI ⊂ 

I, and a right ideal if  IR ⊂  I. [13, 1]          

2.1.4 Definition. [14] A right ideal I of a ring R is called principal if I = aR for 

some a ∈ R. 

2.1.5 Definition. [14] Let R be a ring, M an additive abelian group and (m, 

r) mr, a mapping of  M × R into M such that     

          (1)  mr ∈ M      

            (2)  (m1+ m2)r = m1r + m2r    

           (3)  m(r1+ r2) = mr1+ mr2    

                 (4)  (mr1)r2 = m(r1r2)    

      (5)  m•1 = m    

for all r, r1 , r2 ∈ R and m, m1 , m2 ∈ M. Then M is called a right R-module, often written 

as MR. Often mr is called the scalar multiplication or just multiplication of m by r on 

right. We define left R-module similarly. [14, C14] 

2.1.6 Definition. [13] Let M be a right R-module. A subgroup N of (M, +) is 

called a submodule of M if N is closed under multiplication with elements in R, that is 

nr ∈ N for all n ∈ N, r ∈ R. Then N is also a right R-module by the operations induced 

from M : N × R → N, (n, r) nr, for all n ∈ N, r ∈ R. [13, 6.2] 

2.1.7 Proposition. A subset N of an R-module M is a submodule of M if and 

only if      (1) 0 ∈ N.        

   (2) n1, n2 ∈ N implies n1 −  n2 ∈ N.     

   (3) n ∈ N, r ∈ R implies nr ∈ N.  

Proof.  See [15, Lemma 5.3].                                  � 

2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of 

M. Then the set of cosets     

       M/K = { x + K | x ∈ M }             
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is a right R-module relative to the addition and scalar multiplication defined via  

  ( x + K ) + ( y + K ) = ( x + y) + K    and    ( x + K )r = xr + K.    

The additive identity and inverses are given by      

              K = 0 + K    and    − ( x + K ) = −x + K. 

The module M/K is called ( the right R-factor module of ) M modulo K or the 

factor module of  M by K. [1, p33] 

2.1.9 Definition. [13] Let M and N be right R-modules. A function f : M → N  

is called  an ( R-module ) homomorphism if for all m, m1, m2 ∈ M and  r ∈ R 

    f ( m1r + m2) = f ( m1)r + f ( m2).                                                      

Equivalently,  f ( m1 + m2) = f ( m1) + f ( m2)  and  f ( mr) = f ( m)r.    

    The set of R-homomorphisms of M in N is denoted by HomR(M, N ). In 

particular, with this addition and the composition of mappings, HomR(M, M ) = 

EndR(M ) becomes a ring, called the endomorphism ring of M and  f ∈ EndR(M ) is 

called an R-endomorphism. [13, 6.4] 

2.1.10 Definition. [1] Let f : M → N  be an R-homomorphism. Then                                                     

(1) f  is called R-monomorphism (or R-monic) if  f  is injective (one-to-one).   

(2)  f  is called R-epimorphism (or R-epic) if f  is surjective (onto).               

(3)  f  is called R-isomorphism if f  is bijective (one-to-one and onto).      

               Two modules M and N are said to be R-isomorphic, abbreviated M ≅ N in case 

there is an R-isomorphism f : M → N.          

     2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping ηK : M 

→ M/K  from M onto the factor module M/K defined by  [1, p43] 

                ηK ( x) = x + K ∈ M/K  ( x ∈ M )            

is seen to be an R-epimorphism with kernel K. We call ηK the natural epimorphism of M 

onto M/K. 
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2.1.12 Definition. [1] Let A ⊂ B. Then the function ι = ι A ⊂ B : A → B defined 

by ι = (1B | A) : a a for all a ∈ A is called the inclusion map of A in B. Note that if  A ⊂ 

B and A ⊂ C, and if B ≠ C, then ιA ⊂ B ≠ ιA ⊂ C . Of course 1A = ιA ⊂ A. [1, p2] 

2.1.13 Definition. [14] Let M and N be right R-modules and let f : M → N be 

an R-homomorphism. Then the set [14,c14,3]     

          Ker (f )  = { x ∈ M | f ( x) = 0 } is called the kernel of  f   

and   

        f ( M )  = { f ( x) ∈ N  | x ∈ M } is called the homomorphic image (or simply 

image) of M under f and is denoted by Im(f ).   

2.1.14  Proposition. Let M and N be right R-modules and let f : M → N be an                  

R-homomorphism. Then      

         (1)  Ker (f ) is a submodule of M.     

      (2)  Im(f ) = f ( M ) is a submodule of N.                    

Proof.  See [13, 6.5].                                                                                                      � 

2.1.15  Proposition. Let M and N be right R-modules and let f : M → N be an                

R-isomorphism. Then the inverse mapping  f -1: N → M is an R-isomorphism. 

     

Proof. See[14, Chapter14, 3].                                                                                         � 

2.1.16  Theorem. Let M, M’ , N and N’ be right R-modules and let f : M → N                 

be an   R-homomorphism.        

      (1) If g : M → M’  is an epimorphism with Ker(g) ⊂ Ker(f ), then there 

exists a unique homomorphism h : M’  → N such that     

        f = hg.              

Moreover, Ker(h) = g(Ker(f )) and Im(h) = Im(f ), so that h is monic if and only if 

Ker(g) = Ker(f ) and h is epic if and only if  f  is epic.    

      (2) If g : N’ → N is a monomorphism with Im(f ) ⊂ Im(g), then there 

exists a unique homomorphism h : M → N’ such that     
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N 

M g 

h 
f 

(1) 

N 

N’ 

h g 

f 

(2) 

M 

> M' 

h 

Ker(g) ⊂ Ker( f ) 

     f = gh.              

Moreover, Ker(h) = Ker(f ) and Im(h) = g← (Im(f )), so that h is monic if and only if f is 

monic    and h is epic if and only if Im(g) = Im(f ). 

  

 

           

                                          

Proof.  See [1, Chapter 1, 46].                                                                              �

                              

     2.1.17 Definition. [20] A submodule K of the module M is fully invariant in 

M  if f(K) ⊂ K for every endomorphism f of M. 

2.2  Essential and Superfluous Submodules     

     In this section, we give the definitions of essential and superfluous 

submodules and some theories which are used in this thesis.    

2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M, 

abbreviated K e⊂ M, if for every submodule L of M, K ∩ L = 0 implies L = 0. [13, 17.1] 

2.2.2 Definition. [13] A submodule K of M is called superfluous (or small ) in 

M, abbreviated K ≪ M, if for every submodule L of M, K + L = M implies L = M. [13, 

19.1] 

2.2.3  Proposition. Let M be a right R-module with submodules K ⊂ N ⊂ M 

and H ⊂ M. Then      

    (1)  N ≪ M  if and only if  K ≪ M and  N/K ≪ M/K;  

       (2)  H + K ≪ M  if and only if  H ≪ M and  K ≪ M.    

  Proof.  See [1, Proposition 5.17].                                                                     �
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2.2.4  Proposition. If K ≪ M and f : M → N is a homomorphism then f ( K ) ≪ 

N. In particular, if K ≪ M ⊂ N then K ≪ N.      

   Proof.  See [1, Proposition 5.18].                                                                     � 

 

2.3  Annihilators and Singular Modules                      

In this section, we give the definitions of annihilators, singular modules and 

some theories which are used in this thesis.   

2.3.1  Definition. [1] Let M be a right (resp. left) R-module. For each X ⊂ M, 

the right (resp. left) annihilator of X in R is defined by    

 rR( X ) = { r ∈ R | xr = 0, ∀x∈ X } ( resp. lR( X ) = { r ∈ R | rx = 0, ∀x∈ X }).    

For a singleton {x}, we usually abbreviated to rR( x )  ( resp. lR( x ) ). [1, p37] 

2.3.2  Proposition. Let M be a right R-module, let X and Y be subsets of M 

and let A  and B be subsets of R. Then      

  (1)  rR( X ) is a right ideal of R.     

  (2)  X ⊂ Y  imples  rR( Y ) ⊂  rR( X ).     

             (3)  A ⊂ B  imples  lM ( B ) ⊂ lM ( A ).      

             (4)  X ⊂ lM rR( X ) and A ⊂ rR lM ( A ).                                

Proof.  See [1, Proposition 2.14 and Proposition 2.15].                                  �  

2.3.3 Proposition. Let M and N be right R-modules and let f : M → N be a 

homomorphism. If N’ is an essential submodule of N, then f -1( N’ ) is an essential 

submodule of M.  

Proof.  See [4, Lemma 5.8(a)].                         � 

2.3.4   Proposition.  Let M be a right R-module over an arbitrary ring R, the 
set  Z( M ) = { x ∈ M | rR( x ) is essential in RR } is a submodule of M.  

Proof.  See [4, Lemma 5.9].                                   �  
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             2.3.5 Definition. [4] The submodule Z( M ) = { x ∈ M | rR( x ) is essential in RR } 

is called the singular submodule of M. The module M is called a singular module if 

Z( M ) = M. The module M is called a nonsingular module if Z( M ) = 0.  

 

2.4  Maximal and Minimal Submodules  

    In this section, we give the definitions and some properties of maximal 

submodules, minimal (or simple) submodules and some theories which are used in this 

thesis. 

2.4.1 Definition. [13] A right R-module M is called simple if M ≠ 0 and M has 

no submodules except 0 and M. [13, 6.2] 

2.4.2 Definition. [13] A submodule K of M is called maximal submodule of M 

if K ≠ M and it is not properly contained in any proper submodules of M, i.e. K is 

maximal in M if, K ≠ M and for every A ⊂ M, K ⊂ A implies K = A. [13, 6.7] 

2.4.3 Definition. [13] A submodule N of M is called minimal (or simple) 

submodule of M if N ≠ 0 and it has no non zero proper submodules of M, i.e. N is 

minimal (or simple) in M if N ≠ 0 and for every nonzero submodules A of M, A ⊂ N 

implies A = N. [13, p115] 

2.4.4  Proposition.  Let M and N be right R-modules. If f : M → N is an 

epimorphism with Ker ( f ) = K, then there is a unique isomorphism σ  : M/K → N such 

that.σ (m+K ) = f (m) for all m ∈ M 

 Proof.  See [1, Corollary 3.7].                                     � 

2.4.5  Proposition.  Let K be a submodule of M. A factor module M/K is 

simple if and only if K is a maximal submodule of M.    

Proof.  See [1, Corollary 2.10].                                   � 
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2.5  Injective and Projective Modules      

    In this section, we give the definitions of the injective modules, injective 

testing, projective modules and some theories which are used in this thesis. 

2.5.1  Definition. [1] Let M be a right R-module. A right R-module U is called 

injective relative to M (or U is M-injective) if for every submodule K of M, for every 

homomorphism ϕ : K → U can be extended to a homomorphism α : M → U. [1, p184]

              A right R-module U is said to be injective if it is M-injective for every 

right R-module M. 

2.5.2  Proposition.  The following statements about a right R-module U are 

equivalent :    

          (1)  U is injective;       

   (2)  U is injective relative to R;     

   (3)  For every right ideal I ⊂ RR and every homomorphism h : I → U 

there exists an x ∈ U such that h is left multiplicative by x     

                         h(a) = xa for all a ∈ I.                                                                                 

Proof.  See [1, 18.3, Baer’s Criterion].                       � 

2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called 

projective relative to M (or U is M-projective) if for every NR , every epimorphism g : 

MR→ NR , for every homomorphism γ : UR→ NR can be lifted to an R-homomorphism 

γ̂ : U → M. A right R-module U is said to be projective if it is projective for every right           

R-module M. 

2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an 

injective right (resp. left) R-module.       

   Proof.  See [1, Proposition 18.6].                             � 

 



19 
 

 

2.6  Direct Summands and Product of Modules                         

 Given two modules M1 and M2 we can construct their Cartesian product M1 × 

M2. The structure of this product module is then determined “co-ordinatewise” from the 

factors M1 × M2. For this section we give the definitions of direct summand, the 

projection and the injection maps, product of modules and some theories which are used 

in this thesis. 

2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called 

a direct summand of M if there is a submodule Y of M such that X ∩ Y = 0 and X + Y = 

M. We write M = X ⊕ Y; such that Y is also a direct summand. [1, p66]  

2.6.2 Definition. [1] Let M1 and M2 be R-modules. Then with their products 

module M1 × M2 are associated the natural injections and projections  

   ϕj : Mj  → M1 × M2 and πj : M1 × M2 → Mj             

( j = 1, 2 ),  are defined by        

       ϕ1( x1) = (x1, 0),  ϕ2( x2) = (0, x2)                     

and     

       π1( x1, x2) = x1,  π2( x1, x2) = x2.            

Moreover, we have  

         π1ϕ1 = 1 1M           and    π2ϕ2 = 1 2M , p67] 

2.6.3 Definition. [1] Let A be a direct summand of M with complementary 

direct summand B, so M = A ⊕ B. Then       

      πA : a + b a  ( a ∈ A, b ∈ B )                   

defines an epimorphism πA : M → A is called the projection of M on A along B. [1, p69] 

2.6.4  Definition. [13] Let {Ai , i ∈ I } be a family of objects in the category C.            

An object P in C with morphisms { πi : P → Ai } is called the product of the family {Ai , 

i ∈ I } if :      

    For every family of morphisms { fi : X → Ai } in the category C, there is 
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a unique morphism  f : X → P  with πi f  =  fi for all i ∈ I.     

    For the object P, we usually write ∏
∈ I  i iA , ∏ I iA or ∏ iA . If all Ai are 

equal to A, then we put ∏ I iA = AI. [13, 9.1]       

    The morphism πi are called the i-projections of the product. The 

definition can be described by the following commutative diagram :  

 

 

 

   2.6.5 Definition. [13] Let { Mi , i ∈ I } be a family of R-modules and ( ∏
∈ I i 

iM , 

πi ) the product of the Mi . For m, n ∈ ∏
∈ I i 

iM , r ∈ R, using        

         πi (m + n) = πi (m) + πi (n)     and     πi(mr) = πi (m)r,              

a right R-module structure is defined on ∏
∈ I i 

iM such that the πi are homomorphisms. 

With this structure ( ∏
∈ I i 

iM , πi ) is the product of the { Mi , i ∈ I } in R-module. [13, 9.3] 

2.6.6 Proposition.  Properties:       

       (1)  If  { fi : N → Mi , i ∈ I } is a family of morphisms, then we get the map              

           f : N → ∏
∈ I i 

iM  such that n ( fi(n))i ∈ I                      

and Ker ( f )  = ∩I Ker ( fi ) since f (n) = 0 if and only if  fi(n) = 0 for all i ∈ I.    

      (2)  For every j ∈ I, we have a canonical embedding   

                     εj : Mj → ∏
∈ I i 

iM , such that mj ( mjδji )i ∈ I , mj ∈ Mj ,                    

with  εj πj = 1 jM , i.e. πj is a retraction and εj a coretraction.                     

∏ I iA iπ
iA

X
iff
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 This construction can be extended to larger subsets of I : For a subset A 

⊂ I we form the product ∏
∈A i 

iM and a family of homomorphisms  

         fj : ∏
∈A i 

iM → Mj ,  fj = 




−∈

∈

.AI

A for

j

j

for  
jπ

 

 

 

, 

0

 
          

Then there is a unique homomorphism      

           εA : ∏
∈A i 

iM  → ∏
∈ I i 

iM  with  εAπj = 




−∈

∈

.AI

A for

j

j

for  
jπ

 

 

 

, 

0

 
                              

The universal property of ∏
∈A i 

iM yields a homomorphism    

               πA: ∏
∈ I i 

iM → ∏
∈A i 

iM with πAπj = πj for j ∈ I.           

Together this implies εAπAπj = εAπj = πj for all j ∈ I, and by the properties of the product 

∏
∈A i 

iM , we get εAπA = 1
AM .  

Proof.  See [13, 9.3, Properties (1), (2)]                                                                           � 

2.6.7 Definition. [1]  We say ( ) AMα α∈  is independent in case for each Aα ∈

   ( ) 0.M Mα ββ α≠
∩ =∑       

 If the submodules ( ) AMα α∈  of M are independent, we say that the sum 
A

Mα∑ is 

direct and write         

    
A

Mα∑ = 
A

Mα⊕ . 

2.6.8 Proposition. [1] Let ( ) AMα α∈  be an indexed set of submodules of a 

module M with inclusion maps ( ) Aiα α∈ . Then the following are equivalent: 

          (a) 
A

Mα∑  is the internal direct sum of ( ) AMα α∈ ;   

          (b) :
A A

i i M Mα α= ⊕ ⊕ → is monic;     

          (c) ( ) AMα α∈  is independent;      
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          (d) ( ) FMα α∈  is independent for every finite subset F A⊂ ;  

          (e) For every pair ,B C A⊂ , if B ∩ C = ∅ , then ( )
B

Mβ∑ ∩ ( )
C

Mγ∑ = 0.

      

Proof.  See [1, Proposition 6.10].                                � 

 

2.7  Generated and Cogenerated Classes      

    In this section, we give some definitions and theories of the generated and 

cogenerated classes which are concerned in this thesis. 

2.7.1 Definition. [13] A subset X of a right R-module M is called a generating 

set of M if  XR = M. We also say that X generates M or M is generated by X. If there is a 

finite generating set in M, then M is called finitely generated. [13, 6.6] 

2.7.2 Definition. [1] Let U be a class of right R-modules. A module M is 

( finitely ) generated by U (or U ( finitely ) generates M ) if there exists an epimorphism 

[1, 8]             i
I i
U 

 ∈⊕  → M                          

for some (finite) set I and Ui ∈ U for every i ∈ I.     

            If U = {U } is a singleton, then we say that M is ( finitely ) generated by U          

or ( finitely ) U-generates; this means that there exists an epimorphism  

         U ( I ) → M                         

for some (finite) set I. 

2.7.3 Proposition.  If a module M has a generating set L ⊂ M, then there 

exists an epimorphism    

                                        R ( L ) → M  

Moreover, M is finitely R-generated if and only if M is finitely generated.  

   Proof.  See [1, Theorem 8.1].                         � 

2.7.4 Definition. [17] Let M be a right R-module. A submodule N of M is said 

to be an M-cyclic submodule of M if it is the image of an endomorphism of M. 
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2.7.5 Definition. [1] Let U be a class of right R-modules. A module M is 

( finitely ) cogenerated by U (or U ( finitely ) cogenerates M ) if there exists a 

monomorphism                                                                                                                                                                                                                                                                                                         

                                              M → ∏
∈ I i 

iU                                                          

for some (finite) set I and Ui ∈ U for every i ∈ I.                                                                  

    If U = {U } is a singleton, then we say that a module M is ( finitely ) 

cogenerated by U or ( finitely ) U-cogenerates; this means that there exists a 

monomorphism                                

                                                  M → U I                                       

for some (finite) set I.[1, 8]  

 

2.8  The Trace and Reject        

     In this section, we give some definitions and theories of the trace and reject 

which are concerned in this thesis.  

2.8.1 Definition. [1] Let U be a class of right R-modules. The trace of U in M 

and the reject of U in M are defined by      

  TrM (U) = ∑{ Im(h)  |  h : U → M  for some U ∈ U }  

and         

  RejM (U) = ∩{ Ker(h)  |  h : M → U  for some U ∈ U }.  

              If U = {U } is a singleton, then the trace of U in M and the reject of U in M are 

in the form      TrM (U ) = ∑{ Im(h)  |  h ∈ HomR(U, M ) }                        

and                  

  RejM (U ) = ∩{ Ker(h) |  h ∈ HomR(M, U ) }.[1, 8] 

2.8.2 Proposition.  Let U be a class of right R-modules and let M be a right R-

module.Then 

       (1)  TrM (U) is the unique largest submodule L of M generated by U;

              (2) RejM (U) is the unique smallest submodule K of M such that M/K is 
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cogenerated by   U.            

Proof.  See [1, Proposition 8.12].                       � 

 

2.9 Socle and Radical of Modules       

     In this section, we give some definitions and theories of the socle and radical 

of modules which are used in this thesis.  

2.9.1 Definition. [13] Let M be a right R-module. The socle of M, Soc(M ), we 

denote the sum of all simple submodules of M. If there are no simple submodules in M 

we put Soc(M ) = 0. 

2.9.2 Definition. [13] Let M be a right R-module. The radical of M, Rad( M ), 

we denote the intersection of all maximal submodules of M. If M has no maximal 

submodules we set Rad( M ) = M. [13, 21] 

2.9.3 Proposition.  Let ε  be the class of simple R-modules and let M be an R-

module. Then    

    Soc( M )  =  TrM (ε )      

         =  ∩{ L ⊂ M  |  L is essential in M }.  

Proof.  See [13, 21.1].                           � 

2.9.4 Proposition.  Let ε  be the class of simple R-modules and let M be an R-

module. Then     

   Rad( M )  =  RejM (ε )      

         =  ∑{ L ⊂ M  |  L is superfluous in M }.     

Proof.  See [13, 21.5].                                     � 

2.9.5 Proposition.  Let M be a right R-module. A right R-module M is finitely 

generated if and only if Rad( M ) ≪ M and M/Rad( M ) is finitely generated.           

Proof.  See [13, 21.6, (4)].                              � 
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2.9.6 Proposition.  Let M be a right R-module. Then Soc( M ) e⊂ M if and 

only if every non-zero submodule of M contains a minimal submodule.             

Proof.  See [1, Corollary 9.10].                           � 

2.10 The Radical of a Ring            

    In this section, we give some definitions and theories of the radical of a ring 

which are used in this thesis.  

2.10.1 Definition. [1] Let R be a ring. The radical Rad( RR) of RR is an (two 

side) ideal of R. This ideal of R is called the ( Jacobson) radical of R, and we usually 

abbreviated by [1, 15]                                                                             

                        J( R)  = Rad( RR). 

Since R = 1R is finite generated, J( R) ≪ R. If a ∈ J( R), then aR ⊂ J( R) ≪ R 

so aR ≪ R. If aR ≪ R, then aR ⊂ J( R) and so a ∈ aR ⊂ J( R). This shows that a ∈ 

J( R) if and only if  aR ≪ R. 

2.10.2 Definition. [1] Let R be a ring. An element x ∈ R is called right ( left )           

quasi-regular  if  1 – x  has a right (resp. left ) inverse in R.    

         An element x ∈ R is called quasi-regular if it is right and left quasi-regular.

         A subset of R is said to be ( right, left ) quasi-regular if every element in it 

has the corresponding property. 

2.10.3 Proposition.  Given a ring R for each of the following subsets of R is 

equal to the radical J(R) of R.       

   ( J1)  The intersection of all maximal right ( left ) ideals of R; 

   ( J2)  The intersection of all right ( left ) primitive ideals of R; 

   ( J3)  { x ∈ R |  rxs is quasi-regular for all r, s ∈ R };  

   ( J4)  { x ∈ R |  rx is quasi-regular for all r ∈ R };   

   ( J5)  { x ∈ R |  xs is quasi-regular for all s ∈ R };   

   ( J6)  The union of all the quasi-regular right ( left ) ideals of R; 
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   ( J7)  The union of all the quasi-regular ideals of R;   

   ( J8)  The unique largest superfluous right ( left ) ideals of R;   

Moreover, ( J3), ( J4), ( J5), ( J6) and ( J7) also describe the radical J( R)  if “quasi-

regular” is replaced by “right quasi-regular” or by “left quasi-regular”.                              

Proof.  See [1, Theorem 15.3].                         �   

2.10.4 Proposition.  Let R be a ring with radical J( R). Then for every right R-

module M,      

              J( R)MR ⊂ Rad( MR).               

If R is semisimple modulo its radical, then for every right R-module,  

             J( R)MR = Rad( MR)                    

and M/J( R)MR is semisimple.       

   Proof.  See [1, Corollary 15.18].                        � 



 

 

CHAPTER 3 

RESEARCH RESULT 

 

In this chapter, we present the results of small principally injective modules 

and small principally injective injective rings. 

 
3.1 SP-injective Modules 

3.1.1 Definition. [12] Let R be a ring. A right R-module M is called small 

principally injective (briefly, SP-injective) if every R-homomorphism from a small and 

principal right ideal aR to M can be extended to an R-homomorphism from R to M.  

3.1.2 Lemma.  Let M be right R-modules. Then M is SP-injective   if and only 

if for each a ∈ J(R), lM rR( a )  = M a .  

Proof.  Clearly M a⊂ lM rR( a ) .  ( ⇒ ) Assume that M is SP-injective. Let a ∈ J(R). To 

show that lM rR( a )  = M a . Let x ∈ lM rR( a ) . Define ϕ : aR → xR by ϕ (ar) = xr,  

for.every.r∈R. To show that ϕ is the function. Let ar1 and ar2 be elements in aR such 

that ar1 = ar2. Then ar1-ar2 = 0 and so a( r1-r2 ) = 0. a n d  a( r1-r2 ) = 0, x( r1-r2 ) = 0. 

Hence xr1-xr2 = 0, then xr1 = xr2. Therefore ϕ (ar1) = xr1 = xr2 = ϕ(ar2). This shows that 

ϕ is well-defined. Let ar1, ar2 ∈ aR and r∈R . Then ϕ(ar1r+ar2) = ϕ(a(r1r+r2)) = 

x(r1r+r2) = xr1r+xr2 = ϕ(ar1)r+ϕ(ar2). This shows that ϕ is an R-homomorphism. Since 

M is SP-injective, there exists an R-homomorphism ϕ̂ : R →M such that ϕ̂ i2 = i1ϕ 

where i1: xR → M and i2: aR → R are the inclusion maps. Then x = ϕ(a) = ϕ̂ (a) = 

ϕ̂ (1.a) = ϕ̂ (1)a ∈ Ma. 

         (⇐ ) Let a ∈ J(R), and let ϕ :  aR → M  be an R-homomorphism. Then 

ϕ(a) ∈ lM rR( a ) ,  s o  b y  a s s u m p t i o n ,  w e  h a v e  ϕ(a) = xa for some x∈M. 

Define ϕ̂ : R → M by ϕ̂ (r) = xr every r∈R. It is clear that ϕ̂  is an R-homomorphism 

and is an extension of ϕ.                                                                                                    � 
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3.1.3 Example. Let R = 
0
F F

F
 
 
 

 where F is a field, MR =
 0 0

F F 
 
 

. Then M is 

SP-injective.  

Proof.  We have only A 1 = 0
0 0

F 
 
 

, A2 = 0 0
0 F
 
 
 

, A3 = 
0 0
F F 
 
 

, A4 = 0
0

F
F

 
 
 

, A5 =
 

0 0
0 0
 
 
 

,   

and A6 = 
0
F F

F
 
 
 

 are right ideal of R, and we see that only A1 = 0
0 0

F 
 
 

 is only the 

nonzero small principal right ideal of R because for every Ai ⊂  R , 2 ≤ i ≤ 5, Ai ≠ R then 

A1+Ai ≠ R. Since, for each x = 0
0 0

b 
 
 

∈ 0
0 0

F 
 
 

=A1, 0
0 0

x 
 
  0

F F
F

 
 
 

= 0
0 0

F 
 
 

, i.e., xR=A1 ,  

A1  is a principal right ideal of R. Let ϕ :  A1→ M  be an R-homomorphism. Since 

0 1
0 0
 
 
 

∈ A1, there exists x11 , x12 ∈ F such that ϕ 0 1
0 0

  
     

 =
 

11 12
0 0

x x 
 
 

. Then ϕ 0 1
0 0

  
     

 = 

ϕ 0 1 0 0
0 0 0 1

   
       

 = ϕ 0 00 1
0 10 0

         

 
  
 

 = 11 12
0 0

x x 
 
 

0 0
0 1
 
 
 

 = 120
0 0

x 
 
 

. Then 11 12
0 0

x x 
 
 

 = 

120
0 0

x 
 
 

 so x11 = 0. Define ϕ̂ : R → M  by ϕ̂ 11 12

220
a a

a
         

 = 12 11 12 12
0 0

xa ax 
 
 
 

 for every 

11 12

220
a a

a
 
 
 

∈R . To show that ϕ̂  is well-defined. Let 11 12

220
a a

a
 
 
 
 

, 11 12

220
b b

b

 
 
  
 

∈ R  such that
 

11 12

220
a a

a
 
 
 
 

 = 11 12

220
.b b

b

 
 
  
 

 Then ϕ̂ 11 12

220
a a

a
  
     

 = 12 11 12 12
0 0

x a x a 
 
 
 

 = 12 11 12 12
0 0

x b x b 
 
  
 

 = 

ϕ̂ 11 12

220
.b b

b

 
 
  
 

 
 
 

 To show that ϕ̂  is an R-homomorphism. Let 11 12

220
a a

a
 
 
 
 

,
 

11 12

220
b b

b

 
 
  
 

 ∈ 

0
F F

F
 
 
 

 and 1 2

30
r r

r
 
 
 

 ∈ R. Then ϕ̂ 11 12 1 2

322 00
a a r r

ra
            

 + 11 12

220
b b

b

    

 = ϕ̂ 11 1 11 2 12 3

22 30
a r a r a r

a r

        

+
 + 

11 12

220
b b

b

    

 = ϕ̂ 11 1 11 11 2 12 3 12

22 3 220
a r b a r a r b

a r b
 + + + 
   +  

 = 12 11 1 11 12 22 3 22( ) ( )
0 0

x a r b x a r b+ + 
 
 

 = 

12 11 1 12 11 12 22 3 12 22
0 0

x a r x b x a r x b+ + 
 
 

 = 12 11 1 12 22 3
0 0

x a r x a r 
 
 

 + 12 11 12 22
0 0

x b x b 
 
 

 = 

ϕ̂ 11 1 11 2 12 3

22 30
a r a r a r

a r
 + 
     

 + ϕ̂ 11 12

220
b b

b
  
     

 = ϕ̂ 1 211 12

322 00
r ra a

ra

   
       

 + ϕ̂ 11 12

220
b b

b
  
    

 = 
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ϕ̂ 1 211 12

322 00
r ra a

ra
    
         

 + ϕ̂ 11 12

220
b b

b
  
    

. To show that ϕ̂ ι = ϕ. Let
 

0
0 0

x 
  
 

 ∈ A1. Then 

ϕ̂ ι 0
0 0

x  
     

 = 0
0 0

ˆ xϕ ι
  
     

 = 0
0 0

ˆ xϕ
  
     

 = 120
0 0

x x 
 
 

 = 11 12
0 0

x x 
 
 

0 0
0 x
 
 
 

 =
 

0 1 0 0
0 0 0 x

ϕ
  
     

 
 
 

 

= 0 1 0 0
0 0 0 x

ϕ
   
       

 = 0
0 0

.xϕ   
    

 This shows that ϕ̂  is an extension of ϕ . Thus M  is 

SP-injective.                                                                                                                    � 

3.1.4 Proposition.  Let M be { Mi , i ∈ I } be a family of right R-modules. Then 

the direct product 
i I∈
∏ Mi is SP-injective if and only if each Mi is SP-injective. 

Proof.  ( ⇒ ) Let { Mi , i ∈ I } be a family of right R-modules and the direct product 

i I∈
∏ Mi is SP-injective. Let i ∈ I , we must show that Mi is SP-injective.Let a ∈ R,  aR ≪ 

R and let ϕ : aR → Mi be an R-homomorphism. Let πi and ϕi , for each i∈ I, be the i-th 

projection map and the i-th injection map, respectively. Since 
i I∈
∏ Mi is SP-injective, 

there exists an R-homomorphism ϕ̂ : R → 
i I∈
∏ Mi such that ϕ̂ i  = ϕiϕ  where ι : aR → R  

is the inclusion map. Thus πiϕ̂ ι = πiϕiϕ, so by Definition 2.6.2, πiϕ̂ ι = ϕ. Thus πiϕ̂  is 

an extension of ϕ. 

 (⇐ ) Let Mi is SP – injective. Let a ∈ R,  aR ≪ R and let ϕ :  aR →
i I∈
∏ Mi be an 

R-homomorphism. Let πi be the i-th projection map. Since, for each i, Mi is SP-

injective, there exists an R-homomorphism αi : R → Mi such that πiϕ = αiι where ι :  

aR → R is the inclusion map. Then by Definition 2.6.5 and Proposition 2.6.6, we obtain 

ϕ̂ : M  → ∏
∈ I  i iN  such that πiϕ̂ = αi  for each i ∈ I. Then πiϕ̂ ι = αi ι, so πiϕ = αi ι = 

πiϕ̂ ι. Hence πiϕ = πiϕ̂ ι for each i ∈ I. Therefore ϕ = ϕ̂ ι.                           � 

3.1.5 Lemma. Let Mi (1 ≤ i ≤ n) be SP-injective modules. Then
iMn

i 1  =
⊕ is SP-

injective if and only if each Mi is SP-injective. 
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Proof.  ( ⇒ ) Assume that Mi (1 ≤ i ≤ n)  be R-modules and 
iMn

i 1  =
⊕  is SP-injective. Let i 

∈ I, we must show that Mi is SP-injective. Let a ∈ R, aR ≪ R and let ϕ :  aR → Mi be 

an R-homomorphism. Let πi and ϕi  for each i ∈ I, be the i-th projection map and the i-th 

injection map, respectively. Since
iMn

i 1  =
⊕ is SP-injective, there exists an R-

homomorphism ϕ̂ : R →
iMn

i 1  =
⊕ such that ϕ̂ ι = ϕiϕ where ι : aR → R is the inclusion 

map. Thus πiϕ̂ ι = πiϕiϕ, so by Definition 2.6.2, πiϕ̂ ι = ϕ. Thus πiϕ̂  is an extension of 

ϕ. 

 (⇐ ) Let a ∈ J(R) and ϕ : aR →
iMn

i 1  =
⊕  be an R-homomorphism. Since for each 

i ∈ {1, 2, 3, … , n}, Mi is SP-injective, there exists an R-homomorphism ϕi : R → Mi 

such that ϕi  ι = πiϕ  where πi is the i-th projection map from 
iMn

i 1  =
⊕ to Mi and ι : aR → R  

is the inclusion map. Set ϕ̂ = ι1ϕ1 + ι2ϕ2 + ... + ιnϕi n : R →
iMn

i 1  =
⊕ where ιi : Mi →

iMn
i 1  =
⊕  

for each i ∈ {1, 2, 3, … , n} is the i-injection map. We must show that ϕ̂  is an 

extension of ϕ. Let a(r) ∈ s(R). Then ϕ̂ ι(a(r)) = ϕ̂ (a(r)) = ι1ϕ1(a(r)) + ι2ϕ2(a(r)) + … + 

ιnϕn(a(r)) = ϕ1(a(r)) + ϕ2(a(r)) + … + ϕn(a(r)) = ϕ1ι1(a(r)) + ϕ2ι2(a(r)) + … + ϕnιn(a(r)) 

=π1ϕ(a(r)) + π2ϕ(a(r)) + … + πnϕ(a(r)) = (π1+π2+…+πn)ϕ(a(r)) = ϕ(a(r)). 

Then
iMn

i 1  =
⊕ is SP-injective.                                                                                                � 

3.1.6 Lemma. Any direct summand of  SP-injective module is again SP-

injective. 

Proof. Let M be an SP-injective module and let A be a direct summand of M. To show 

that A is an SP-injective. Let a ∈ R, aR ≪ R and let ϕ : aR → A be an R-

homomorphism. Since M is SP-injective, there exists an R-homomorphism ϕ̂ : R → M 

such that αϕ =ϕ̂ ι where ι : aR → R is the inclusion map and α  : A → M is the injection 

map. Let π : M → A be the projection map. Then παϕ = πϕ̂ ι. Hence by Definition 

2.6.2, ϕ = π ϕ̂ ι. Then πϕ̂ is an extension of ϕ .                                                               � 
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3.2  SP - injective Rings        

 If RR  is an SP-injective modules, then we call R is a right SP-injective ring. In 

this section, we give some properties and characterizations of SP-injective rings. 

3.2.1 Lemma. [12] The following conditions are equivalent for a ring R 

 (1)  R is right SP-injective ring.                                                

 (2)  lr(a) = Ra for any a ∈ J(R).                                   

 (3)  r(a) ⊂ r(b), where a ∈ J(R), b ∈ R implies Rb ⊂ Ra.                                       

           (4)  l(r(a) ∩ bR) = l(b) + Ra  for all a ∈ J(R), b ∈ R. 

           (5)  If α : aR→ R, a ∈ J(R), is an R-homomorphism,  then α(a)∈ Ra. 

 3.2.2 Theorem.  Let R be a right SP-injective ring. Then 

 (1) lr(Ra) = Ra,  for any a ∈ J(R).                                    

 (2) If aR ⊕ bR and Ra ⊕  Rb are both direct, a,b ∈ J(R), then l(a)+l(b) = R. 

Proof.  (1) Let R be a right SP-injective ring and let a ∈ J(R). To show that 

lr(Ra) = Ra.( ⊃ ) Let ra ∈ Ra. To show that ra ∈ lr(Ra) . L e t  s ∈  R, and Ras = 0. 

Then ras = 0 and hence ra ∈ lr(Ra) . ( ⊂ ) Let x ∈ lr(Ra) . D e f i n e  ϕ : aR → xR b y  

ϕ(ar) = xr,  f o r  e v e r y  r∈R .  T o  s h o w  t h a t  ϕ is the function. Let ar = 0 then 

ϕ(ar) = xr = 0. This shows that ϕ is well–defined. Let ar1, ar2 ∈ aR and r∈ R . Then 

ϕ(ar1r + ar2) = ϕ(a(r1r + r2 )) = x(r1r + r2) = xr1r + xr2 = ϕ(ar1)r +ϕ (ar2). This shows 

that ϕ is an R-homomorphism. Since R is a right SP-injective ring. Then there exists     

ϕ̂ : R →R an R-homomorphism, such that i1ϕ = ϕ̂ i2 where i1 : xR → R  and i2 : aR → R 

are the inclusion maps. Then x = ϕ(a) = ϕ̂ (a) = ϕ̂ (1.a) = ϕ̂ (1)a ∈ Ra.    

       (2) Let R be a right SP-injective ring, a , b ∈ J(R) and let aR ⊕ bR and Ra ⊕  Rb 

are both direct. To show that l(a)+l(b) = R. D e f i n e  ϕ : (a+b)R → R b y  ϕ(a+b)r = 

br,  for every r∈ R. T o  s h o w  t h a t  ϕ  is the function. I f  (a+b)  = 0,  t h e n  a r  =  

b r∈ aR ∩ bR = 0 so br = 0. Then ϕ(a+b)r = br = 0. This shows that ϕ is well–defined.  
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We now show that ϕ is an R-homomorphism. Let (a+b)r1, (a+b)r2 ∈(a+b)R and r∈R . 

Then ϕ((a+b)r1r + (a+b)r2) = ϕ((a+b)(r1r + r2)) = b(r1r + r2) = br1r + br2 = ϕ(a+b)r1r + 

ϕ(a+b)r2. This shows that ϕ is an R-homomorphism. Since R is a right SP-injective, 

there exists an R-homomorphism ϕ̂ : R →R such that ϕ = ϕ̂ i where i : (a+b)R → R is 

the inclusion map. Hence ϕ̂ (1)(a+b) = ϕ̂ (1.(a+b)) = ϕ̂ (a+b) = ϕ(a+b) = b so ϕ̂ (1) 

(a+b) = b. Then ϕ̂ (1)a + ϕ̂ (1)b = b, and so ϕ̂ (1)a = b-ϕ̂ (1)b =(1-ϕ̂ (1))b ∈Ra ∩ Rb 

= 0. Then ϕ̂ (1) ∈ l(a) and (1-ϕ̂ (1)) ∈l(b). Hence 1 = ϕ̂ (1) + (1-ϕ̂ (1)) ∈ l(a) +l(b). 

Then 1 ∈ l(a)+ l(b) so l(a)+ l(b) = R.                                                � 

            3.2.3  Proposition. If R is a right SP-injective, so is eRe for all e2 = e ∈R 

satisfying ReR = R. 

 

Proof.  Let R be a right SP-injective and e be an idempotent sastisfying ReR = R. Write 

S = eRe. Let a ∈ J(eSe) and let ϕ : aS → S be an S-homomorphism.  To show that r(a) 

⊂ r(ϕ(a)). Let x ∈ r(a). Then ax = 0. Hence ϕ(a)x = ϕ(ax) = ϕ(0) = 0. This shows that 

r(a) ⊂ r(ϕ(a)), so lrϕ(a) ⊂ lr(a) by proposition 2.3.2 (3). Since a(eRe)R = ae(ReR) = 

aeR = aR. Since aSR ⊂ JR ≪ R, aSR ≪ R, so aR ≪ R. Then by Lemma 3.1, lr(a) = Ra. 

It follows that Rϕ(a) ⊂ lr(ϕ(a)) ⊂ lr(a) = Ra. Then ϕ(a) = eϕ(a). Since ϕ(a) = 1Rϕ(a) 

∈Rϕ(a) ⊂ Ra, ϕ(a) ∈ Ra so eϕ(a) ∈ eRa. Then ϕ(a) = eϕ(a) ∈ eRa = eRea = (eRe)a, so 

ϕ(a) = sa for some s∈ S. Define ϕ̂ : S →S by ϕ̂ (t) = st for every t ∈ S.  Let t1, t2  ∈ S 

such that t1= t2. Then st1= st2. Hence ϕ̂ (t1) = st1= st2 = ϕ̂ (t2). This shows that ϕ̂  is 

well-defined. Let t1,  t2 ∈ S  and t ∈ S. Then ϕ̂ (t1t+ t2) = s(t1t+ t2) = st1t+st2 = ϕ̂ (t1)t + 

ϕ̂ (t2). This shows that ϕ̂  is S-homomorphism.  To show that ϕ = ϕ̂ i. Let at ∈ aS. 

Then ϕ(at) = ϕ(a)t = sat = ϕ̂ (a)t = ϕ̂ (at) =ϕ̂ i(at). Hence eRe is right SP-injective.    

                                                                                                                     � 
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 3.2.4  Theorem.  Let R be right SP-injective, a ∈R and b∈J(R). 

    (1) If  bR embeds in aR, then Rb is an image of Ra.   

    (2) If aR is an image of bR, then Ra embeds in Rb.   

    (3) If bR ≅  aR, then Ra ≅Rb. 

Proof. (1) Let f : bR→ aR be an R-monomorphism. Since R is right SP-injective, 

there exists an R-homomorphism f̂ : R → R such that ι2 f = f̂ ι1 where ι1 : bR 

→ R and ι2 : aR→ R are the inclusion maps. Define σ : Ra → Rb by 

σ (sa) = s f̂ (b) for every s ∈ R. If sa = 0,  then σ (sa) = s f̂ (b) = sf(b) ∈ s(aR) = 

(sa)R = 0. To show that Im( f̂ b) ⊂ Im(a). This shows that σ is well-defined. To show 

that σ is a left R-homomorphism. Let s1(a), s2(a) ∈ Ra and v ∈ R. Then σ (vs1a + s2a) = 

σ ((vs1 + s2)a) = (vs1+s2) f̂ b = vs1 f̂ b+ s2 f̂ b = v(s1 f̂ b) + s2 f̂ b = vσ(s1a) + σ(s2a). To 

show that σ is an R-epimorphism. Let kb ∈ Rb. To show that r( f̂ (b)) ⊂ r(b). Let x ∈ 

r( f̂ (b). Then f̂ (b(x)) = 0, so f(b(x)) = f̂ (b(x)) = 0. Since f is monic, bx = 0. Then x ∈ 

r(b) and hence lr(b) ⊂ lr( f̂ (b)). Since bR  ≪ R and f̂  : R → R is an R-homomorphism, 

f̂ (b)R≪ R by Proposition 2.2.4. Since R is SP-injective, Rb ⊂ R f̂ b by Lemma 3.2.1. 

Then b=1⋅b= s f̂ b for some s ∈ R. Hence there exists ksa∈ Ra such that kb = σ (ksa).  

           (2) Let f : bR  → aR  be an R-epimorphism. Since R is SP-injective, there exists 

an R-homomorphism f̂  : R → R such that ι2 f = f̂ ι1 where ι1 : bR→ R and 

ι2 : aR→ R are the inclusion maps. Define σ : Ra → Rb  by σ (sa) = s f̂ (bx) for 

every s∈R. It is clear that σ is a left R-homomorphism. Let sa ∈ 

Ker(σ)..Then.0.=.σ (sa).=.s f̂ (bx).=.sf(bx) = sa =0. 

            (3) Follows from (1) and (2)                                                                             � 

     Following[1], a ring is R semiprimitive in case J(R) = 0. 
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               3.2.5  Proposition. The following conditions are equivalent for a ring R: 

     (1)  R is semiprimitive. 

                        (2) Every right R-module is SP-injective.       

     (3) Every principal right ideal is SP-injective.     

Proof. We only prove the right side, the left side is analogously. It is ovious that (1) ⇒  

(2) ⇒  (3). We show (3) ⇒  (1). Suppose J ≠ 0. Then there exists a nonzero element a ∈ 

J(R).Then by assumption, the inclusion map from aR to R is split. Then aR is direct 

summand of R so aR = 0 which is contradiction.                                                              � 

 
   3.2.6  Theorem.  The following conditions are equivalent for a ring R: 

(1)  Every small and principal right ideal of R is projective.                          

                   (2)  Every factor module of an SP-injective module is SP-injective.                                                                                                                                                                                                                                                      

          (3)  Every factor module of an injective R-module is SP-injective.                           

Proof. (1) ⇒ (2) Let M be an SP-injective module, X a submodule of M.  To show that 

M/X is an SP-injective. Let a ∈ J(R) and let ϕ : aR→ M/X be an R-homomorphism. 

Since aR is projective, there exists an R-homomorphism α : aR → M such that ϕ  = ηα  

where η : M → M/X is the natural R-epimorphism. Since M is SP-injective, there exists 

an R-homomorphism  β : R → M such that α = β ι where ι : aR → R is the inclusion 

map. Then ϕ = ηα = ηβ ι. Therefore ηβ is an extension of ϕ . Thus M/X is an SP-

injective.                                                                                                                                                     

(2) ⇒ (3) Let M be an injective R-module and X be a submodule of M. It is clear that an 

injective R-module is an SP-injective module, so M is SP-injective. Then by (2), M/X is 

an.SP-injective.                                                                                                                                                                     

(3) ⇒ (1) Let aR ≪ R, γ : A → B be an R-epimorphism and let ϕ : aR→ B be an R-

homomorphism. Let E be an injective R-module and embed A in E by Proposition 2.5.4. 

Since γ is an R-epimorphism, by Proposition 2.4.4, there exists an R-isomorphism σ  :  

A/Ker(γ ) → B such that γ  = ση1 where η1 : A → A/Ker(γ ) is the natural R-

epimorphism. Then by Proposition 2.1.15, we have σ - 1 : B → A/Ker(γ ) is an R-

isomorphism, so B ≅A/Ker(γ ) and A/Ker(γ ) is a submodule of E/Ker(γ ). By 
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assumption, there exists an R-homomorphism ϕ̂ :M→E/Ker(γ ) such that ι1σ - 1 ϕ  = 

ϕ̂ ι2 where ι1 : A/Ker(γ ) → E/Ker(γ ) and ι2 : aR → R are the inclusion maps. Since R is 

projective, there exists an R-homomorphism β : R → E such that ϕ̂  = η2β where 

η2 : E → E/Ker(γ ) is the natural R-epimorphism. Then ϕ̂ ι2 = η2β ι2. Hence  ι1σ - 1 ϕ 

= ϕ̂ ι2  =  η2β ι2.  It  follows  that  ι1σ - 1 ϕ  = η2β ι2. To show that  β (aR) ⊂ A. Let a(r) 

∈ a(R). Then ι1σ - 1 ϕ (a(r)) = η2β ι2(a(r)) = η2β (a(r)) = η2(β (a(r))) = β ( a(r)) + 

Ker(γ ). Hence ι1σ - 1 ϕ (a(r)) = σ - 1 ϕ ( a(r)) = a + Ker(γ ) for some a ∈ A, so β ( a(r)) + 

Ker(γ ) = a + Ker(γ ). Thus β ( a(r)) – a ∈ Ker(γ ). It follows that  β ( a(r)) = (β (a(r)) – 

a) + a ∈ Ker(γ ) + A = A. To show that ϕ  = γβ. Let a(r) ∈ a(R). Then ι1σ - 1 ϕ ( a(r)) = 

σ - 1 ϕ ( a(r)) = η2β ι2(a(r)) = η2β ( a(r)). Hence ι1σ - 1 ϕ ( a(r)) = η2β ( a(r)) = β ( a(r)) + 

Ker(γ ), so ι1σ - 1 ϕ ( a(r)) = β ( a(r)) + Ker(γ ). Since γ  is an R-epimorphism, ϕ ( a(r)) = 

γ (a) for some a ∈ A. Thus ι1σ - 1 ϕ ( a(r)) = ι1σ - 1 γ  (a) = σ - 1 γ (a) = η1(a) = a + 

Ker(γ ). It follows that β ( a(r)) + Ker(γ ) = a + Ker(γ ). Then β (a(r)) – a ∈ Ker(γ ). 

Hence γ (β (a(r)) – a) = 0, so γβ (a(r)) = γ (a) = ϕ ( a(r)). Thus γ β (a(r)) = ϕ (a(r)). This 

shows that β lifts ϕ.                                                                                                        � 

              3.2.7  Proposition. Let R be right SP-injective and bi ∈ J(R) , (1 ≤ i ≤ n). 

         (1) If Rb1 ⊕…⊕  Rbn is direct, then any R-homomorphism α : b1R + .. . + 

bnR → R can be extended to R.                     

         (2) If b1 R⊕…⊕  bnR is direct, then R(b1 + .. . + bn) = Rb1 + . . . + Rbn . 

Proof. (1) Let Rb1 ⊕…⊕  Rbn is direct and let α : b1R + .. . + bnR → R be an R-

homomorphism. Since R is SP-injective, for each i, 1 ≤ i ≤ n, there exists an R-

homomorphism ϕ i : R → R such that α(bir) = ϕ i(bir) for every r ∈ R . Since bi(R) ≪ R 

for each i = 1, 2, …, n,   ≪ R by Proposition 2.2.3(2), and we have 

 ⊂  which implies  ≪ R by Proposition 2.2.3(1). 

Since R is SP-injective, there exists an R-homomorphism ϕ  : R → R such that, for any 

r∈R , ϕ  = α  To show that = . Let r ∈ R. 
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Then   = ϕ 1b1(r) + ϕ 2b2(r) + … + ϕ nbn(r) = αb1(r) + αb2(r) + … +   αbn(r) 

= (αb1 + αb2 + … + αbn)(r) = α(b1 +b2 + … + bn)(r) = α  = ϕ  

= ϕ(b1 + b2 + … + bn)(r) = (ϕb1 + ϕb2 + … + ϕbn)(r) = ϕb1(r) + ϕb2(r) + … + ϕbn(r) = 

..This.shows.that. . = ..Then.(ϕ 1b1− ϕ b1) + (ϕ 2b2−

ϕ b2) + … + (ϕ nbn− ϕ bn) = 0. Thus (ϕ 1− ϕ )b1 + (ϕ 2− ϕ )b2 + … + (ϕ n− ϕ )bn = 0. 

Since Rb1 ⊕  Rb2 ⊕…⊕  Rbn is direct, (ϕ 1− ϕ ) = (ϕ 2− ϕ ) = (ϕ n− ϕ ) = 0. Then by 

Proposition 2.6.8, (ϕ 1− ϕ )b1 = (ϕ 2− ϕ )b2 = … = (ϕ n− ϕ )bn = 0. Hence (ϕ i − ϕ )bi =  

0, for all 1 ≤ i ≤ n. Thus ϕ i( bi ) = ϕ  ( bi ) , for all 1 ≤ i ≤ n. To show that α = ϕ ι. Let 

b1(x1) + b2(x2) + … + bn(xn) ∈ b1(R) + b2(R) + … + bn(R). Then α(b1(x1) + b2(x2) + … 

+bn(xn)) = αb1(x1) + αb2(x2) + … + αbn(xn) = ϕ 1b1(x1) + ϕ 2b2(x2) + … + ϕ nbn(xn) = 

ϕ b1(x1) + ϕ b2(x2) + … + ϕ bn(xn) = ϕ (b1(x1) + b2(x2) + … +bn(xn)) = ϕ ι(b1(x1) + 

b2(x2) + … + bn(xn)). Hence α(b1(x1) + b2(x2) + … + bn(xn)) = ϕ ι(b1(x1)  +  b2(x2)  + 

… + bn(xn)). This shows that ϕ  is an extension of α. 

      (2) ( ⊃ ) Let α1b1 + α2b2 + … + αnbn ∈ Rb1 + Rb2 + … + Rbn. To show that                            

α1b1 + α2b2 + … + αnbn ∈ R(b1 + b2 + … + bn).  For each i, define ϕ i : (b1 + b2+ … + 

bn)R  → R by ϕ i((b1 + b2 + … + bn)r) = bir for every r ∈ R.  Let 0 = (b1 + b2 + … 

+bn)(r) ∈ (b1 + b2 + … + bn)R . Then b1(r) + b2(r) +…+ bn(r) = (b1 + b2 + … + bn)R = 0. 

Since b1R ⊕  b2R ⊕…⊕  bnR is direct, b1r = b2r = … = bnr = 0 so bir = 0. This shows 

that iϕ  is well-defined. Let (b1 + b2 + … + bn)r1, (b1 + b2 + … + bn)r2 ∈ (b1 + b2 + … + 

bn)R . Then ϕ i((b1 + b2 + … + bn)(r1)r + (b1 + b2 + … + bn)(r2)) = ϕ i((b1 + b2 + … + 

bn)(r1r + r2)) = bi(r1r + r2) = bi(r1r) + bi(r2) = bi(r1)r + bi(r2) = ϕ i((b1 + b2 + … + 

bn)(r1))r + ϕ i((b1 + b2 + … + bn)(r2)). This shows that ϕ i is an R-homomorphism. By 

the similar proof of (1) we have (b1 + b2 + … + bn)R  ≪ R. Since R is SP-injective, there 

exists an R-homomorphism ˆiϕ  : R → R such that ϕ i = ˆiϕ ι where ι : (b1 + b2 + … + bn)R  

→ R is the inclusion map. Then bi = ϕ i(b1 + b2 + … + bn) = ˆiϕ (b1 + b2 + … + bn) ∈ 

R(b1 + b2 + … + bn). Hence αibi  = αi ϕ̂i (b1 + b2 + … + bn) ∈ R(b1 + b2 + … + bn) so 

α1b1 + α2b2 + … + αnbn = α1 ϕ̂1 (b1 + b2 + … + bn) + α2 2ϕ̂ (b1 + b2 + … + bn) + … + 

αn ˆnϕ (b1 + b2 + … + bn) = (α1 1̂ϕ  + α2 2ϕ̂ + … + αn ˆnϕ )(b1 + b2 + … + bn) ∈ R(b1 + b2 + 
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… + bn). ( ⊂ ) Let α(b1 + b2 + … + bn) ∈ R(b1 + b2 + … + bn). Then α( b1 + b2 + … + 

bn) = αb1 + αb2 + … + αbn ∈ Rb1 +...+ Rbn.                                                        � 

3.2.8  Proposition.  Let R be right SP-injective  and B1⊕…⊕  Bn  a direct 

sum of small(two – side) ideals of R. Then for any fully invariant ideal A of  R, we have  

 A ∩  (B1 ⊕…⊕  Bn) = (A ∩ B1) ⊕…⊕  (A ∩ Bn). 

Proof.  ( ⊃ ) Since A ∩ Bi⊂ A ∩ (B1 ⊕…⊕  Bn) for each i = 1, 2, …, n, we have 

(A ∩ B1) ⊕…⊕ (A ∩ Bn) ⊂ A ∩ (B1 ⊕…⊕Bn). ( ⊂ ) Let a =  ∈ A ∩  

(B1 ⊕…⊕  Bn). To show that   ∈ (A ∩ B1) ⊕…⊕  (A ∩ Bn). Let πk : 

 → bkR  be the projection map. Since for each i, (1 ≤ i ≤ n), Rbi⊂ Bi . Thus 

 is direct. By Proposition 3.2.7, πk has an extension ˆkπ : R → bkR such that πk 

= ˆkπ ι where ι :  → R  is the inclusion map. Let ri ∈ R. Then bi  = πi  = 

ˆiπ ι  = ˆiπ  = ˆiπ (a) ∈ A ∩  Bi . Hence = b1 + b2 + … + bn ∈ 

A∩ B1⊕A∩ B2⊕…⊕A∩ Bn.                                                                                        � 

 

 



 

 

Lists of References 

 

[1]  F. W. Anderson and K. R. Fuller,  “Rings and Categories of Modules,” Graduate 

Texts in Math. No.13 ,Springer-verlag, New York, 1992. 

[2] V. Camillo, “Commutative Rings whose Principal Ideals are Annihilators,”  

Portugal Math., Vol 46, 1989. pp 33-37. 

[3]  N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, “Extending Modules,”   

              Pitman, London, 1994. 

[4]  A. Facchini, “Module Theory,” Birkhauser Verlag, Basel, Boston, Berlin,1998. 

[5] T.Y. Lam, “A First Course in Noncommutative Rings,” Graduate Texts in 

Mathematics Vol 131, Springer-Verlag, New York, 1991. 

[6]  S. H. Mohamed and B. J. Muller, “Continuous and Discrete Modules,”  London 

Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990. 

[7]  W. K. Nicholson and M. F. Yousif, “Principally Injective Rings,” J. Algebra, Vol 

174, 1995. pp 77-93. 

[8] W. K. Nicholson and M. F. Yousif, “Mininjective Rings,” J. Algebra, Vol 187, 

1997. pp 548-578. 

[9]  W. K. Nicholson, J. K. Park and M. F. Yousif, “Principally Quasi-injective 

Modules,” Comm.  Algebra, 27:4(1999). pp 1683-1693. 

[10] N. V. Sanh, K. P. Shum, S. Dhompongsa and S.Wongwai, “On Quasi-principally 

Injective Modules,” Algebra Coll.6: 3, 1999. pp 269-276. 

[11]  L. Shen and J. Shen, “Small Injective Rings,” arXiv: Math., RA/0505445 vol 1,  

             2005. 

[12] L.V. Thuyet, and T.C.Quynh, “On Small Injective Rings, Simple-injective and  

             Quasi-Frobenius Rings,” Acta Math. Univ. Comenianae, Vol 78(2), 2009. pp  

           161-172. 

[13] R. Wisbauer, “Foundations of Module and Ring Theory,” Gordon and Breach  

            Science Publisher, 1991. 

[14] P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul, “Basic Abstract Algebra,” The  

            Press Syndicate of the University of Cambridge, second edition, 1995.  

 



 

39 
 

Lists of References (Continued) 

 

[15]   B. Hartley and T. O. Hawkes, “Ring, Modules and Linear Algebra,” University  

              Press, Cambridge, 1983.  

[16]  S. Wongwai, “On the Endomorphism Ring of a Semi-injective Module,” Acta 

Math.Univ. Comenianae, Vol 71, 2002. pp 27-33. 

[17]  S. Wongwai, “Almost Quasi-mininjective Modules,” Chamjuri Journal of 

Mathematics, Vol 2, 2010, no. 1. pp 73-79. 

[18]  S. Wongwai, “Small Principally Quasi-injective Modules,” Int. J. Contemp. 

Math. Sciences, Vol 6, 2011, no. 11. pp 527-534. 

[19] S. Wongwai, “Quasi-small P-injective Modules,” Journal of Science and 

Technology RMUTT, Vol 1, 2011. no. 1. pp 59-65. 

[20] Friedrich Kasch and Adolf Mader, "Rings, Modules and the Total,"  Birkhauser  

             Verlag, Basel, Switzerland, 2004.  

[21]  K. Amnuaykarn and S. Wongwai, “On Small Principall injective Rings,” 

Proceeding of The 2nd International Science, Social Science, Engineering 

and Energy Conference 2010, December 15-16, 2010, Nakhonphanom, 

Thailand. pp 166. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

41 
 

 
 

 

 

 

 

APPENDIX A 

 

Conference Proceeding  

Paper Title “On Small Principally injective Rings” 

The 2nd International Science, Social Science, Engineering and Energy  

Conference 2010  

At   Nakhonphanom River View Hotel 

 December 15-16, 2010 

 

 
 
 
 
 
 

 
 



 

42 
 

 

 
 



 

43 
 

 

 
 



 

44 
 

 

 
 



 

45 
 

 
 
 



 

46 
 

 



 

47 
 

 



 

48 
 

 



 

49 
 

 



 

50 
 



 

51 
 

 



 

52 
 

 



 

53 
 

 



 

54 
 

 



 

55 
 

 



 

56 
 

 



 

57 
 

 



 

58 
 

 



 

59 
 

 



 

60 
 

 



   

 

 

Biography 

 

Name-Surname  Mr. Kittisak  Amnuaykarn 

Date of Birth   August 21, 1979 

Address   70 Moo 12, Tambol Sum-Sao, Phen District,  

                                                Udonthani 41150. 

Education              Bachelor of degree, (1998 – 2002) 

               Mathematics. Khon Kaen University. 

 

Experiences Work            Teacher in Program Mathematics.   

               Faculty of Industrail and Technology. 

                          Rajamangala University of  Technology Isan. 

                                               Sakon Nakhon Campus,(2005-2014) 

         

Published Papers            “On Small Principally injective Rings” 

                         The 2nd International Science, Social Science,  

                                               Engineering and Energy Conference 2010  

                                               At  Nakhonphanom River View Hotel,  

                                               December15-16, 2010 

     

 


	01_cov
	02_tit
	03_apv
	04_abs
	05_ack
	06_tbc
	07_ch1
	07_ch2
	07_ch3
	(1)  Every small and principal right ideal of R is projective.
	(2)  Every factor module of an SP-injective module is SP-injective.                                                                                                                                                                     ...
	(3)  Every factor module of an injective R-module is SP-injective.

	08_bib
	09_app
	The 2nd International Science, Social Science, Engineering and Energy
	Conference 2010  At   Nakhonphanom River View Hotel  December 15-16, 2010

	10_bio

