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     ABSTRACT  

 

It is widely believed that the volatility of asset returns tends to be time varying 

and occasionally clustered, which leads to various stochastic volatility models. The 

assumption of constant intensity is relaxed to allow stochastic intensity.  Combinations 

lead to stochastic volatility and stochastic intensity models, as well as jump-diffusion 

with stochastic volatility and stochastic intensity models.  

In this thesis, a jump-diffusion combined with stochastic volatility model and 

stochastic intensity is considered and its presentations include:  the dynamics of asset 

price in which the asset price follows a geometric Brownian motion, compound Poisson 

processes with the stochastic volatility following Heston model, and the stochastic 

intensity following mean reverting process.  

A formula of the European option is calculated by using a technique based on 

the characteristic function of the underlined asset which can be expressed in an explicit 

formula. 

 

 

Keywords: jump - diffusion model, stochastic volatility, intensity, characteristic  

                   functions. 
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CHAPTER 1 

INTRODUCTION 

 

A financial derivative is a financial instrument. The value of derivative 

determined by the price of something else that called the underlying. Example: Options, 

Futures, Swap. A call option gives the right to buy the assets whereas a put option gives 

the right to sell the asset at a strike price. European options can only be exercised at 

expiration date. American option can be exercised any time during the life of the option. 

The problem of pricing the option and modeling of the underlying assets. How much 

should the buyer pay for the option? How do we model the underlying asset specific on 

a stock price? 

In 1973, Fischer Black and Myron Scholes explain if option are correctly 

priced in the market, it should not be possible to make sure profits by creating portfolios  

of long and short positions in option and their underlying stocks. Using this principle, a 

theoretical valuation formula for options is derived.  

In 1993, Heston use a new technique to derive a closed – form solution for the 

price of a European call option on an asset with stochastic volatility. The model allows 

arbitrary correlation between volatility and spot asset returns. 

 In 1996, Bates developed for pricing American potions on stochastic volatility 

jump - diffusion processes under systematic jump and volatility risk. We are interested 

in seeing to what extent the Bates model. 

 

1.1  Purpose of the Study 

1.1.1  To investigate the option pricing for jump - diffusion with stochastic  

volatility and intensity. 

1.1.2  To find a closed - form solution for European call option of jump - 

diffusion with stochastic volatility and intensity. 

 

1.2  Theoretical Perspective 

1.2.1  Basic Stochastic Processes 

1.2.2  Elementary Stochastic Calculus 
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1.3  Delimitations and Limitations of the Study 

For this thesis, we have the scopes and the limitations of studying which are 

concerned to the previous works which are:        

1.3.1  To investigate the option pricing for jump - diffusion with stochastic 

volatility and intensity. 

1.3.2  To find a closed-form solution for European call option of jump -

diffusion with stochastic volatility and intensity. 

   

1.4  Significance of the Study    

Option pricing for jump - diffusion with stochastic volatility and intensity is 

presented by using stochastic calculus. 

 



 

CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter we give notations, definitions and fundamental theories of the 

jump-diffusion model, stochastic volatility, intensity, characteristic functions which are 

used in this thesis. 

 

 2.1  Option 

 2.1.1  call option is a contract to buy at a specified future time a certain 

amount of an underlying asset at a specified price. 

2.1.2   put option is a contract to sell at a specified future time a certain 

amount of an underlying asset at a specified price. 

According to terms on exercise in the contract, options have the following types: 

-  European options can be exercised only on the expiration date. 

-  American options can be exercised on or prior to the expiration date. 

Define K and T are strike price and expiration date respectively, then an option’s payoff 

(value)  ,  S  C T at expiration date is: 

 (   K) max(   K,0)T TS S          (call option) 

 ( K ) max(K , 0)T TS S          (put option) 

where TS  denotes the price of the underlying asset at the expiration date t T . Option 

is a contingent claim. Take a call option as example. If TS  , the underlying asset’s price 

at expiration date, is higher than the strike price K , then the holder of the option can 

exercise the rights to buy the asset at the strike price K (to gain profits). Otherwise, the 

option is a worthless. That is 

( , )

0 .

T T

T

S K if S K

C T S

otherwise
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In the case of 
TS K  the option is called “in the money”. It is said to be “out of 

the money” if   .TS K  If
TS K , it is “at the money”. Similarly, the payoff function is 

 ( K )TS   for a European put option. 

The price paid for a contingent claim is called the premium. When the option 

is traded on an organized market, the premium is quoted by the market. Otherwise, the 

problem is to price the option. Also, even if the option is traded on an organized market, 

it can be interesting to detect some possible abnormalities in the market. 

Taking into account the premium, the total gain of the option holder at its 

expiration date is[Total gain] = [Gain of the option at expiration] - [Premium] i.e., 

Total gain =  (   K)TS   - premium       (call option) 

Total gain =  ( K )TS  - premium       (put option) 

As a derived security, the price of an option varies with the price of its underlying asset. 

Since the underlying asset is a risky asset, its price is a random variable. 

 

2.2  Stochastic Process 

Definition. [11] A stochastic process X is a collection of random variables 

( , ) ( ( ), , )t tX t T X t T     , 

defined on some space  . 

 

2.3  Brownian Motion 

Definition. [11] A stochastic process
 

( , [0, ))tW W t  
 

is called standard 

Brownian motion or a Wiener process if the following conditions are satisfied: 

(1)  It starts at zero : 0 0W  . 

(2)  For every 0t  , tW has a normal (0, )N t distribution. 

(3)  It has continuous sample paths: “no jumps” 
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2.4  Itô Formula [15] 

Suppose that ( , )F t x
 

is a real – valued function with continuous partial 

derivative ( , )tF t x , ( , )xF t x and ( , )xxF t x for all 0t  and Rx . Then ( , )tF t W is an Itô 

process such that 

0
0 0

1
( , ) (0, ) ( , ) ( , ) ( , ) .

2

T T

T t t xx t x t tF T W F W F t W F t W dt F t W dW
 

    
 

   

In differential notation this formula can be written as 

1
( , ) ( , ) ( , ) ( , )

2
t t t xx t x t tdF t W F t W F t W dt F t W dW

 
   
 

 

where  

0t tdt dt dW dt dt dW       

and 

 
2

.t t tdW dW dW dt    

2.5  Poisson Process 

Definition. [11] A stochastic process ( , [0, ))tN t 
 
is called an homogeneous 

Poisson process or simply a Poisson process with intensity or rate 0  if the following 

conditions are satisfied: 

(1)  It starts at zero : 0 0.N   

(2)  It has stationary, independent increments. 

(3)  For every 0, tt N has a Poisson Poi ( )t distribution. 

 

2.6  Probability 

2.6.1  Definition. [11] The collection of the probabilities 

 ( ) ( ) ( : ( ) ), R=(- , )XF x P X x P X x x        , 

 is the distribution function XF of X . 

2.6.2  Definition. [11] Most continuous distributions of interest have a density 

Xf : 

( ) ( ) , R,
x

X XF x f y dy x
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where  

( ) 0Xf x   for every R x and ( ) 1Xf y dy



 . 

An important continuous distribution is the normal or Gaussian distribution 2( , )N    

with parameters 2R, 0.    It has density 

2

2

1 ( )
( ) exp , R

22
X

x
f x x





 
   

 
. 

 

2.7  Random Variable 

Theorem. [13] Let X  be a random variable and let ( )Z g x for some 

function g. 

Suppose X  is continuous with probability density function (pdf) ( ).Xf x  

If ( ) ( ) ,Xg x f x dx



  then the expectation of Z exists and it is given by 

  ( ) ( ) .Xg x f x dx



     

  

2.8  The Normal Distribution [13] 

We will proceed by first introducing for applications and for statistical 

inference, in through it the general normal distribution.  

Consider the integral 

           
21

exp
22

z
I dz







 
  

 
 .                                            (2.1) 

The integral exists because the integrable function, that is, 

 
2

0 exp exp 1 , ,
2

z
z z

 
        

 
 

and  

 exp 1 2 .z dz e



    

To evaluate the integral I , we note that 0I  and that 2I may be written 
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2 2
2 1

exp .
2 2

z w
I dzdw



 

 

 
  

 
   

This iterated integral can be evaluated by changing to polar coordinates. If we set 

cosz r  and sinw r  , we have 

22
2 /2

0 0

1

2

rI e r dr d






    

      
2

0

1

2
d






   

                                                      1 . 

Because the integrand of display (2.1) is positive on R and integrates to 1 over R , it is a 

pdf. of a continuous random variable with support R . We denote this random variable 

by Z . In summary, Z  has the pdf., 

21
( ) exp , .

22

z
f z z



 
     

 
 

Note  [13] X has 2( , )N    distribution if and only if 
x

Z





  has a (0,1)N  

distribution. 

 

2.9  The Stock Price Process [14] 

It is generally assumed that stock price follow geometric Brownian motion 

under the real world measure P , 

                                     t t t tdS S dt S dW                                                     (2.2) 

where R
 
and , R ,t tS W  is Brownian motion and the process is defined on 

[0, ]T .Equation (2.2) is known as Black – Scholes model or diffusion model. 

A solution tS , to this equation can be found with the help of Ito’s formula. 

 Let ( , ) ln( ).f t x x  It follows from that  2( , ) ( 0, R).f t x C    Fortunately, if we 

assume that RtS  , we can define  2( , ) ( 0, R ).f t x C     We have 

 
2

2

1 1
ln( )

2
t t t

t t

d S dS dS
S S

  . 
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By Itô Formula,  

df
  

2
2

2

1
( )

2
t t

f f f
dt dS dS

t x x

  
  
  

 

 
2

2

2

1
( ) ( )

2
t t t t t t

f f f
dt S dt S dW S dt S dW

t x x
   

  
    
  

 

 
2

2

1 1
0 ( ) ( )

2
t t t t t t

t t

S dt S dW S dt S dW
S S

       

 
2

2

1 1
( ) ( )

2
t t t t t t

t t

S dt S dW S dt S dW
S S

      
 

 
2

2

1 1
( ) [( )

2
t t t t

t t

S dt S dW S dt
S S

     22 ( ) ]t t t t tS S dW dt S dW   

 
2 2 2 2 2 2

2

1 1 1
( ) ( ( ) 2 ( )

2
t t t t t t t t t

t t t

S dt S dW S dt S S dW dt S dW
S S S

           

 
2 2 2 21
( ) 2 ( )

2
t t tdt dW dt dtdW dW            

 
21

2
tdt dW dt    

 

 
21

( )
2

tdt dW       

which integral notation is 

21
ln( ) ( )

2
t td S dt dW      

2

0 0 0

1
ln( ) ( )

2

t t t

u ud S du dW        

 

 

2

0 0

1
( )

2

t t

udu dW       

2

0 0

1
( )

2

t t

u
u u

u W  
 

    

21
( ) .

2
tt W          (2.3) 

2

0
0 0

1
ln( ) ln( ) ( )

2

t t

t uS S du dW      
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The solution 
tS  is 

2

0

1
ln ( )

2

t
t

S
t W

S
  

 
   

 
 

2

0

1ln ( )
2

t

t

S
t WS

e e
  

 
   
    

     

21
( )

2

0

tt W
tS

e
S

   

  

      

21
( )

2
0

tt W

tS S e
   

  

      
2

0

1
exp(( ) )

2
t tS S t W     .      

 Thus by assuming that the stock price follow the geometric Brownian motion 

described in equation (2.2), we are also assuming that the stock price is lognormally 

distributed. There are ample empirical evidence to support this assumption. This means 

that from equation (2.3) 

  2 2

0

1
ln( ) ~ ln , .

2
tS N S t t  

  
   
  

 

 The next aim is to find a probability measure under which t
t

t

S
S

B
  is a 

martingale , called the risk – neutral probability measure. The discounted process 

t
t

t

S
S

B


 

    

21
( )

2
0 e

tt W
rte S

   
  

    
21

( )
2

0 e
tt W rt

S
    

  

    
21

( )
2

0 e
tr t W

S
    

 . 

That is, 

2

0

1
exp(( ) )

2
t tS S r t W            

where rt

tB e  and r  is the constant risk-free rate of interest.  
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To get the stochastic process driving rt

t tS S e , we again use Ito’s formula 

( , )t tdf t S dS  

  
( )rt

td S e             

 
rt rt

t tS de e dS    

 
( ) ( ) ( )rt rt

t t t tS e d rt e S dt S dW     
 

                                    
( )( ) ( )rt rt rt

t t t tS e r dt e S dt e S dW        

  
rt rt rt

t t t trS e dt e S dt e S dW        

( ) rt rt

t t tr S e dt e S dW      

( ) .t t tr S dt S dW     

Thus 

( )t t t tdS r S dt S dW    . 

 

2.10  Girsanov’s theorem [14] 

Girsanov’s theorem is used to transform stochastic processes in terms of their 

drift parameters. In option pricing, Girsanov’s theorem is used to find a probability 

measure under which the risk-free rate adjusted stock price process is a martingale. 

2.10.1  Definition. Let ( , )v v S T be the class of functions 

( , ) :[0, ) Rf t     

such that 

1. ( , ) ( , )t f t  is B F -measurable, where B  is the Borel sets on [0,∞). 

2. ( , )f t   is adapted. 

3. 2

0
( , ) .

T

E f t dt   
    

  

2.10.2  Theorem. Girsanov’s theorem. Let RtX   be an Ito process, of the 

form 

( , ) ( , )t tdX t dt t dW      
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with .t T   Suppose  that  there  exist  a ( , )v t  -process ( , ) R u t   and 

( , ) R t   such that  

( , ) ( , ) ( , ) ( , ).t u t t t         

Since we are only looking at the on dimensional case, 

( , ) ( , )
( , )

( , )

t t
u t

t

   


 


 . 

We further assume that 

2

0

1
exp ( , ) )

2

T

PE u s ds
  

   
  
 . 

Let  

 2

0 0
exp ( , ) ( , )

t t

t sM u s dW u s ds      

and 

TdQ M dP . 

We then have that 

~

0
( , )

t

t tW W u s ds    

is a Brownian motion with respect to Q . tX in terms of tW is 

( , ) ( , )t tdX t t dW     . 

Ito’s clear that the process tS has a trend, ( ) tr S  . This trend causes tS not to 

be a P -martingale (a martingale under probability measure P ). 

The risk - neutral probability measure is found by employing Girsanov’s 

theorem. By using the notation of the Girsanov theorem we can define, for the 

process tS . 

( )
( , ) t

t

r S
u t

S







  

( )r




 . 
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Note that ( , ) 0t    and ( , )u t u  is a finite scalar since we assumed that   is 

strictly positive. The result of this is that is met and ( , )u t  . 

Since 

2

2

0 0

1 1
exp( ( , ) ) exp ,

2 2

T T

P P

r
E u s ds E ds






     
              

                        (2.4) 

tM  was defined in Theorem 2.10.2 as follows. 

                 2

0 0
exp ( , ) ( , ) .

t t

t sM u s dW u s ds                                                       (2.5) 

In this case, for ( , )u t u   

                              2

0 0
exp

t t

t sM udW u ds     

                    

2

0 0e

t t

s

s s

uW u s

 

 

  

                    
2

0[ ] [ 0]
e tu W W u t   

  

                    
2

e tuW u t 
 . 

The new measure, the risk- neutral probability measure can be defined as 

TdQ M dP . 

We can define a new process 

0
( , )

t

t tW W u s ds    

     
0

t

tW uds    

     
0

t

t
s

W us


   

    [ 0]tW u t    

    tW ut   

which is a Q  – Brownian motion. The original process tS , in terms of tW  is 

( )t t t tdS r S dt S dW     

      ( ) ( )t t tr S dt S d W ut      
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( ) ( )t t t tdS r S dt S dW udt      

      ( ) t t t tr S dt S dW S udt       

                              
( )

( ) t t t t

r
r S dt S dW S dt


  




     

      ( ) ( )t t t tr S dt S dW S r dt        

      .t tS dW         

The scalar ( , )
r

u t s





  is also known as the market price of risk. If ,r   then the 

investor is called risk – neutral and .dQ dP  

Since 

2

2

0 0

1 1
exp ( , ) exp

2 2

T T

P P

r
E u s ds E ds






       
                  

   

and 

 2

0 0
exp ( , ) ( , )

t t

t sM u s dW u s ds     . 

In this case, for ( , ) 0u t    

 2

0 0
exp

t t

t sM udW u ds      

      
0

1

e


 

and 

TdQ M dP . 

We have 

dQ dP . 

Under the measure Q  we price instruments as if they are risk- neutral.       

 

2.11  Heston model [7] 

The Heston model assumes that
 tS , the price of the asset, is determined by a 

stochastic process: 
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S

t t t t tdS S dt v S dW 
 

where 0  , tv  the instantaneous variance  is a CIR process: 

( ) v

t t t tdv v dt v dW      

where 0, 0, 0      and ,S v

t tW W  are Brownian motion with correlation  . 

 

2.12  Bates model [1] 

Bates introduced an efficient method is developed for pricing American options 

on stochastic volatility jump-diffusion processes under systematic jump and volatility 

risk. The exchange rate tS satisfy the following process: 

S

t t t t t tdS S dt v S dW kdN    

( ) v

t t t tdv v dt v dW      

where k is the random percentage jump conditional on a jump occurring and tN is a 

Poisson process with constant intensity  . 

2.13  Feynman-Kac Formula [12] 

Let ,a b  and g  be smooth, bounded functions. Let X  solve the stochastic differential 

equation 

( , ) ( , )t t t tdX a t X dt b t X dW   

and let 

( , ) ( )T tu x t E g X X x     . 

Then u  is a solution of 

21
0

2
t x xxu au b u    

 ( , ) ( )u x T g x  

for
 
t T . 

  

http://en.wikipedia.org/wiki/CIR_process


CHAPTER 3 

RESEARCH RESULT 

 

In this chapter, we present the results of jump - diffusion with stochastic 

volatility and intensity. 

 

3.1  Option Pricing for Jump-Diffusion with Stochastic Volatility and Intensity 

The propose model assumes that the underlying asset has the following 

dynamics under risk-neutral measure, 

( ) St
t t t t t

t

dS
r m dt v dW Y dN

S
                    

( ) v

t v v t t tdv v dt v dW                              (3.1.1) 

   ( )t t t td dt v dW 

             

where tS  is the price of the stock, r is the risk free rate,
 
m

 
is the expected of tY , tv  is 

the instantaneous variance, v  is the rate at which tv  reverts to v , v is the long 

variance,  is the volatility of the stock’s returns, tY  is jump size with normal 

distribution, tN  is a Poisson counter with intensity  , S

tW  and v

tW  are Brownian 

motion with correlation  . For the intensity dynamics we have:  is a mean-reverting 

rate,  is the long term intensity,   is a volatility of jump intensity and 
tW  is a 

standard Brownian motion. We assume that jump process are independent of 

S

tW , v

tW and 
tW  . A standard Brownian motion

 tW  is independent of S

tW and v

tW . 

Denote the characteristic function for  lnT TX S  as 

   ( , , , ; ) [ | , ]T
ixX

t tf l v t x E e X l v v                                        (3.1.2) 

where 0 t T   and 1i   . Then, the following theorem holds. 
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Theorem 3.1  Suppose that tS  follows the dynamics in (3.1.1). Then the characteristic 

function for TX  defined in (3.1.2) is given by  

  ( , , , ; ) exp( ( ) ( ) ( ) )f l v t x ixl ixr A B v C           

where  

1 2 2 1

1 1 1 1

2 2 2 2
2 1 1 2

2 2

2 2
( ) ln ln

2 2

r r q q

v v r e re q e q e
A

H E

   

    


 

    
      

   
      

, 

 
2

1 2

1
( ) ( )

H

H

e
B u u

r r e










 
   

 
,  

1 2

1
( ) 2

E

E

e
C F

q e q










 
  

 
,  u ix  

 1 ( )vr u H    ,  2 ( )vr u H     ,  
2 2 2( ) ( )vH u u u       

 1q E  ,   2q E   ,  
2 22E F    ,   ( 1) ( )uy

YF mu e y dy



     

 and ( )Y y  is a density of random jump size tY .  

 

Proof   Feynman-Kac formula gives the following PDE for the characteristic function  

 21 1 1
( ) ( ) ( )

2 2 2
l ll v v v vv lvr v m f vf v f vf vf v f                   

21
[ ( , , , ; ) ( , , , ; )] ( ) 0

2
Y tf f l y v t f l v t y dy f       




      ,                      (3.1.3) 

( , , , ; ) ixlf l v T x e  . 

Consider for the characteristic function: 

( , , , ; ) exp( ( ) ( ) ( ) )f l v t x ixl ixr A B v C                      (3.1.4) 

where T t    and ( 0) ( 0) ( 0)A B C       . 

We plan to substitute equation (3.1.4) into equation (3.1.3). Firstly, we compute 

                                 , , , , , , ,l ll v vv lv tf f f f f f f f  . 

That  is 

         

( ) ( ) ( )( )ixl ixr A B v C

lf e
l

       



 

         
( ) ( ) ( ) ( ( ) ( ) ( ) )ixl ixr A B v Ce ixl ixr A B v C

l

             
    


 

              

( ) ( ) ( ) ( )ixl ixr A B v Ce ix           
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( ) ( ) ( )ixl ixr A B v C
lf ixe                 

      ixf                                                                                                            (3.1.4.1) 

 

 llf ixf
l



  

 
( ) ( ) ( )ixl ixr A B v Cixe

l

       

  

 
( ) ( ) ( )ixl ixr A B v Cix e

l

       


  

 ( )ix ixf
 

 
2 2i x f

 

 2x f  ,                                             (3.1.4.2) 

 

 ( ) ( ) ( ) ( ( ) ( ) ( ) )ixl ixr A B v Cf e ixl ixr A B v C
v

    
         
    


  

      ( ) ( ) ( )( ) ixl ixr A B v CB e            

                 ( )B f ,                           (3.1.4.3) 

 

( )vvf B f
v







 

      
( ) ( ) ( )( ) ixl ixr A B v CB e

v

        



 

       ( )( ( ) )B B f   

                  2( )B f ,                                                                                            (3.1.4.4) 

 

            
( ) ( ) ( )ixl ixr A B v C

lvf ixe
v

       



           

                  ( ) ( ) ( ) ( ( ) ( ) ( ) )ixl ixr A B v Cixe ixl ixr A B v C
v

             
    


  

                  ( ) ( ) ( )( ) ixl ixr A B v CixB e           
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            ( )lvf ixB f ,                          (3.1.4.5) 

 

( ) ( ) ( ) ( ( ) ( ) ( ) )ixl ixr A B v Cf e ixl ixr A B v C    
     



    
    


 

                 ( ) ( ) ( )( ) ixl ixr A B v CC e           

                 ( )C f  ,                          (3.1.4.6)  

 

            ( )f C f 






   

                    ( ) ( ) ( )( ) ixl ixr A B v CC e     


   



              

         ( ) ( ) ( )( ) ixl ixr A B v CC e     


   



 

                    ( )[ ( ) ]C C f   

                    
2( )C f ,                            (3.1.4.7) 

 

  ( ) ( ) ( ) ( ( ) ( ) ( ) )ixl ixr A B v C
tf e ixl ixr A B v C

t

             
    


 

      
( ) ( ) ( )

( )
A B v C

ixr f
t t t t

       
   

   
                                          (3.1.4.8) 

Consider the following 

      

     
( )

( )
A

A
t t

 




  
 

  
 

                             
( )T t

A
t



 


  

     
A  ,                                                (3.1.4.9) 
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       ( ) ( )B v v B
t t

 
 


 

 

 
( )B

v
t

 



  
  

  
 

          
( )T t

vB
t



 



 

          B  ,                            (3.1.4.10) 

 

      ( ) ( )C C
t t

   
 


 

 

          
( )C

t

 




  
  

  
 

          
( )T t

C
t


 




 

          C  ,                        (3.1.4.11) 

 

Thus  

  
( )tf ixr A B v C f                            (3.1.4.12) 

Consider 

  ( ) ( ) ( ) ( )( , , , ; ) .ix l y ixr A B v Cf l y v t x e             

We have 

( , , , ; ) ( , , , ; )f l y v t x f l v t x   ( ) ( ) ( ) ( ) ( ) ( ) ( )ix l y ixr A B v C ixl ixr A B v Ce e                    

       
( ) ( ) ( ) ( ) ( ) ( )ixl ixy ixr A B v C ixl ixr A B v Ce e                    

       
( ) ( ) ( ) ( ) ( ) ( )ixy ixl ixr A B v C ixl ixr A B v Ce e e                    

       ( ) ( ) ( ) ( 1)ixl ixr A B v C ixye e          

      
 

( 1) .ixye f                                   (3.1.4.13) 
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Substitute (3.1.4.1) – (3.1.4.13) into (3.1.3), 

2 2 21 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2
v vr v m ixf v x f v B f vB f vixB f                

 

2 21
( ) ( ) ( ) [( 1) ] ( ) ( ) 0

2

ixy

YC f C f e f y dy ixr A B v C f             



         
 

Let ,ix u then 

2 2 21 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2
v vr v m uf v x f v B f vB f vuB f                

2 21
( ) ( ) ( ) [( 1) ] ( ) ( ) 0.

2

uy

YC f C f e f y dy ur A B v C f             



         
 

Since ,ix u  then         2 2( )ix u  

             
2 2 2i x u  

             
2 2x u  . 

We have  

2 2 21 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2
v vr v m u vu v B vB vuB C            


        



2 21
( ) ( 1) ( ) 0

2

uy

YC e y dy ru A B v C f       





       


  

So, 

2 2 21 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2
v vr v m u vu v B vB vuB C                      

2 21
( ) ( 1) ( ) 0.

2

uy

YC e y dy ru A B v C       



             

Then 

2 2 21 1 1
( ) ( ) ( ) ( )

2 2 2
v vru vu mu vu B B v vB vuB                 

2 21
( ) ( ) ( )

2
C C C            ( 1) ( ) 0.uy

Ye y dy ru A B v C    
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That  is 

2 2 21 1 1
( ) ( ) ( )

2 2 2
vu mu vu B B v vB              

( ) ( ) ( )vuB C C          

 
2 21

( ) ( 1) ( )
2

uy

YC e y dy A B v C       



      . 

Consider 

2 2 21 1 1
( ( ) ( ) ( ))

2 2 2
vvu vu B v vB vuB           

2 21
( ) ( 1) ( ) ( )

2

uy

YC e y dy mu C       




 
     
 

  

 

We obtain 

2 2 21 1 1
( ) ( ) ( )

2 2 2
u u B B uB v     

 
     
 

 

2 21
( ) ( 1) ( ) ( )

2

uy

YC e y dy mu C     




 
     
 

  

 ( ) ( ) .B C A B v C                  

This leads to the following system: 

   ( ) ( )v vA B C                                   (3.1.5) 

   2 2 21 1
( ) ( ) ( ) ( )

2 2
vB u u u B B                       (3.1.6) 

   2 21
( ) ( ) ( 1) ( )

2

uy

YC C C mu e y dy     



     .           (3.1.7) 

In the equation (3.1.6) become a Ricatti equation.  

 2 2 21 1
( ) ( ) ( ) ( ).

2 2
vB u u u B B                             

Let 
2

( )
( )

( )
2

G
B

G








  . 

 

 

 ( ) ( ) .B C A B v C                
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We obtain 

2 2 21 1
( ) ( ) ( ) ( ) ( )

( ) 2 2
v

d
B u u u B B

d
     


       

or 

2

22

2

2 2

( )

( )
1 ( ) 1 ( )2

( ) ( )
2 2

( ) ( )
2 2

v

G
d

G
G G

u u u
d

G G






 
  

 
 

 
 
 

    
                  

   
   
   

    

(3.1.6.1) 

We have

 

2

2 2

2
2

( )

( )
12 ( ) ( ( ) ( ) ( ( ))

2 2
( )

2

dG

G
d d

G G G G
d d d

G






 
   

   





 
    

  
 
 

 

 
2 2

2
2

( ) 1
( ) ( ) ( )

2 2 ( )
( )

2

dG
G G G

d
G

  
  

 


 
    

  
 
 

 

 
2 2

2

2
2

1
( ) ( ) ( ( ))

2 2
( )

2

G G G

G

 
  




 
    

  
 
 

 

 
2 2

2

4
2

1
( ) ( ) ( ( ))

2 2
( )

4

G G G

G

 
  




 
    

 
                   (3.1.6.2) 
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Substitute (3.1.6.2) into (3.1.6.1) 

2 2
2

4
2

2

2 2

2 2

1
( ) ( ) ( ( ))

2 2
( )

4

1 ( ) 1 ( )
( ) ( ) .

2 2
( ) ( )

2 2

v

G G G

G

G G
u u u

G G

 
  




 
  

 
 

 
   

 

   
    

          
   
   
   

    

We get                         

2 2
2

4 4
2 2

1 1
( ) ( ) ( ( ))

2 2
( ) ( )

4 4

G G G

G G

 
  

 
 

   
   

      
   
   
   

2
2 2

2 4
2

1 ( ) 1 ( ( ))
( ) ( ) .

2 2
( ) ( )

2 4

v

G G
u u u

G G

 
  

 
 

   
    

        
   
   
     

This is 

2 2
2 2

4 4
2 2

1 1 1
( ) ( ) ( ( )) ( )

2 2 2
( ) ( )

4 4

G G G u u

G G

 
  

 
 

   
   

        
   
   
   

2
2

2 4
2

( ) 1 ( ( ))
( ) 0

2
( ) ( )

2 4

v

G G
u

G G

 
  

 
 

   
    

      
   
   
     

or 

2
2

4 2
2

( ) ( ) 1 ( )
( ) ( ) 0

2 2
( ) ( )

4 2

v

G G G
u u u

G G
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Multiply above equation by 
2

( ),
2

G


  

2 2 2 2
2

4 2
2

( ) ( ) 1 ( )
( ) ( ) ( ) ( ) ( ) 0

2 2 2 2 2
( ) ( )

4 2

v

G G G
G u u G u G

G G

      
    

 
 

      
             

     

 
4 2 2

2

4
2

( ) ( ) 1
( ) ( ) ( ) ( ) 0

4 2 2
( )

4

v

G G
u u G u G

G

   
   




  
       

 
 

 
2

2( ) ( ) ( ) ( ) ( ) 0
4

vG u u G u G


    
 

       
 

 

2
2( ) ( ) ( ) ( ) ( ) 0

4
vG u u G u G


           

 
2

2( ) ( ) ( ) ( ) ( ) 0.
4

vG u G u u G


           

 

Write down the characteristic equation 

 

2
2 2( ) ( ) 4 ( )

4

2

u u u uv v

p


   

 
      
 
 

  

  

 

2 2 2

1

( ) ( ) ( )

2

v vu u u u
p

         
  

  

            

2 2 2

2

( ) ( ) ( )
.

2

v vu u u u
p

         
  

Next, 

    1 2
1 2( )

p pG C e C e     

              

2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

2 2
1 2

v v v vu u u u u u u u

C e C e
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2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

2 2
1 2( )

v v v vu u u u u u u u

G C e C e

         
 



          


   

         
1 2

1 1

2 2
1 2

r r

C e C e
 

  .                             (3.1.6.3) 

where  

1 ( )vr u H    , 
2 2 2( ) ( )vH u u u       

2 ( )vr u H     . 

Note that 1 2 ( ) ( ) 2v vr r u H u H H            

      1 2 ( )vr r u H      ( )v u H      

             
2 2( )vH u     

             
2 2 2 2( ) ( ) ( )v vu u u u           

                        
2 2( )u u   . 

The boundary condition 

 
0 0

1 2(0)G C e C e   

          1 2(1) (1)C C   

          1 2C C  . 

Equation (3.1.6.3) become 

1 2

1 1

2 2

1 2( )

r r

de de
G C C

d d

 


 



    

          
  

1 2

1 1

2 2
1 1 2 2

1 1
( ) ( )

2 2

r rd d
C e r C e r

d d

 
 

 



    

          
  

1 2

1 1

2 2
1 1 2 2

1 1
( )

2 2

r rd d
C e r C e r

d d

  

 



    

          
  

1 2

1 1

2 2
1 1 2 2

1 1
( )

2 2

r r

C e r C e r
 

   . 
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From 

1 2

1 1

2 2
1 1 2 2

1 1
( ) ,

2 2

r r

G C e r C e r
 




     

 

we get 

0 0
1 1 2 2

1 1
(0) ( )

2 2
G C e r C e r     

          1 1 2 2

1 1
( )

2 2
C r C r    

         
 

1 1 2 2

1 1

2 2
rC r C   . 

Let    (0) 0G  . 

We have 1 1 2 2

1 1
0

2 2
rC r C    

 
                      1 1 2 2 0rC r C    

                                     
2 2 1 1r C rC  

                                    2 2
1

1

r C
C

r
 . 

From
   1 2(0)G C C  . 

It imply 

           2 2
2

1

(0)
r C

G C
r

   

 and 

1 1
2

2

rC
C

r


   

we obtain 

1 2 2 2 1(0)G r r C C r   

                      
2 1 2( )C r r   

                       
2 (2 )C H . 
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That is       

   1
2

(0)

2

rG
C

H
 . 

 

Note that  

          
1 2(0)G C C   

       1 1
1

2

rC
C

r
  . 

 

Consider 

 1 1 2
2 1 2

2

( )
(0)

rC r
r G C r

r
   

  
1 2 1 1C r rC   

  
1 2 1( )C r r   

  
1(2 )C H . 

That is  

          

2
1

(0)

2

r G
C

H
 . 

We have  

2
1

(0)

2

r G
C

H
   and  1

2

(0)

2

rG
C

H
 . 

Since  

2

( )
( ) ,

( )
2

G
B

G








   

then           

 

 

1 2

1 2

1 1

2 2
1 1 2 2

1 12

2 2
1 2

1 1

2 2

( )
2

r r

r r

C e r C e r

B

C e C e
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1 2

1 2

1 1

2 12 2
1 2

1 12

2 12 2

(0) (0)1 1

2 2 2 2

(0) (0)

2 2 2

r r

r r

r G rG
e r e r

H H
B

r G rG
e e

H H

 

 








 
  
  

 
 

 

 

 

1 2

1 2

1 1

2 12 2
1 2

1 12

2 12 2

(0) (0)1 1

2 2 2 2

(0) (0)

2 2 2

r r

r r

r G rG
r e r e

H H

r G rG
e e

H H

 

 





 


 

  
 

 

 

1 2

1 2

1 1

2 2
1 2 1 2

1 12

2 2
2 1

(0)
( )

2(2 )

(0)
( )

2(2 )

r r

r r

G
rr e r r e

H

G
r e re

H

 

 





 



 

  

          

1 2

1 2

1 1

2 2
1 2 2 1

1 12

2 2
2 1

1
r r

r r

r r e r re

r e re

 

 





 
 

 
  

 

          

1 2

1 2

1 1

2 2 2 22 2

1 12

2 2
2 1

1 ( ) ( )
r r

r r

u u e u u e

r e re

 

 

 







 
    
 

  

 

          

 
1 2

1 2

1 1

2 2
2 2

1 12

2 2
2 1

1
( )

r r

r r

e e
u u

r e re

 

 








 
   

 
  

 

  

2 1 2

2 1 2

1 1 1

2 2 2
2

1 1 1

2 2 2
2 1

( )

r r r

r r r

e e e
u u

e r e re

  

  

 

 

  
     

   
      

 

  

1 2 2 2

1 2 2 2

1 1 1 1

2 2 2 2
2

1 1 1 1

2 2 2 2
2 1

( ) ( )
( )

( ) ( )

r r r r

r r r r

e e e e
u u

r e e r e e

   

   

  

  

 
   

 
  

 

  

1 2

1 2

( )

02
2

( )

02
2 1

( )

r r

r r

e e
u u

r e re
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2

2
2

2

2

2 1

1
( )

H

H

e
B u u

r e r







 
 
 

 
 
 

 
 

    
  

 

 2

1 2

1
( ) .

H

H

e
u u

r r e









 
   

 
 

 

Next, consider equation (3.1.7). 

2 21
( ) ( ) ( 1) ( )

2

uy

YC C C mu e y dy     



     . 

 

Let  

2

( )
( )

( )
2

M
C

M








  . 

 

Similarly in ( )B  , we have  

2 21
( ) ( ) ( ) ( 1) ( )

2

uy

Y

d
C C C mu e y dy

d
     






      

 

22

2

2 2

( )

( )
1 ( ) ( )2

( 1) ( ) .
2

( ) ( )
2 2

uy

Y

M
d

M
M M

mu e y dy
d

M M







 
  

 
 





 
 
 

    
                 

   
   
   

  

           

(3.1.7.1) 
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and  

2

2 2

2
2

( )

( )
12

( ) ( ) ( ) ( ( ))
2 2

( )
2

M
d

M
d d

M M M M
d d d

M






 
   

   


 
 
 
 
         

  
 
 

     

                                                                 

    

2 2

2
2

( ) 1
( ) ( ) ( )

2 2
( )

2

dM
M M M

d
M

  
  

 


 
    

  
 
 

 

      
2 2

2

2
2

1
( ) ( ) ( ( ))

2 2
( )

2

M M M

M

 
  




 
    

  
 
 

 

                  
2 2

2

4
2

1
( ) ( ) ( ( ))

2 2
( )

4

M M M

M

 
  




 
    

 
                        (3.1.7.2) 

 

Substitute (3.1.7.2) into (3.1.7.1) 

2 2
2

4
2

1
( ) ( ) ( ( ))

2 2
( )

4

M M M

M

 
  




 
   

 

2

2

2 2

1 ( ) ( )
( 1) ( ) .

2
( ) ( )

2 2

uy

Y

M M
mu e y dy

M M
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We have 

2 2
2

4 4
2 2

1 1
( ) ( ) ( ( ))

2 2
( ) ( )

4 4

M M M

M M

 
  

 
 

   
   

      
   
   
   

2

2

2 2

1 ( ) ( )
( 1) ( ) .

2
( ) ( )

2 2

uy

Y

M M
mu e y dy

M M


 
  

 
 





   
     

       
   
   
   



 

That is 

2

2 2
2 2

4 4 2
2 2

1 1 1 ( )
( ) ( ) ( ( ))

2 2 2
( ) ( ) ( )

4 4 2

M
M M M

M M M

  
   

  
  

     
     

         
     
     
     

 

2

( )
( 1) ( ) 0

( )
2

uy

Y

M
mu e y dy

M



 








 
 

     
 
 
 



 

or 

 

2

22 2
2

4 4 2 2
2 2

( )( ) ( ) 1 ( ) ( )

2 2 2
( ) ( ) ( ) ( )

4 4 2 2

MM M M M

M M M M


     
 

   
   

       
          

          
       
       
       

( 1) ( ) 0.uy

Ymu e y dy



   

 

We  get 

2

4 2
2

( ) ( ) ( )
( 1) ( ) 0.

2
( ) ( )

4 2

uy

Y

M M M
mu e y dy

M M
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Multiply above equation by  
2

( )
2

M


  

2 2 2

4 2
2

( ) ( ) ( )
( ) ( )

2 2 2
( ) ( )

4 2

M M M
M M

M M


     
  

 
 

   
       

         
      

   
   

2 2

( ) ( ) ( 1) ( ) 0.
2 2

uy

Ymu M M e y dy
 

  




   
        

   


 

Then

4 2 2 2

4
2

( ) ( )
( ) ( ) ( ) ( 1) ( ) 0

4 2 2
( )

4

uy

Y

M M
M mu M M e y dy

M


    
    








 
     

          
    

 
 

  

or 

2 2

( ) ( ) ( ) ( ) ( 1) ( ) 0
2 2

uy

YM M mu M M e y dy

 
     





   
        

   
  

2 2

( ) ( ) ( ) ( 1) ( ) 0.
2 2

uy

YM M M mu e y dy

 
    





 
       

 
  

Write down the characteristic equation 

            
2 0r de e    

         

2 2
2

1

4( ( 1) ( ) )
2 2

2

uy

Ymu e y dy

r
 

 
  




     




 

 
2

2 4 ( 1) ( )
2

2

uy

Ymu e y dy 


  





 
      

 



 

 
 2 22 ( 1) ( )

2

uy

Ymu e y dy    



     




 

          

2 2

1

2

2

F
r
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where 

  ( 1) ( )uy

YF mu e y dy



     

So,        

2 2

1

2

2

F
r

     
 , 

2 2

2

2

2

F
r

     
 . 

Let 2 2

1 22 , ,E F q E q E            . 

We have 

 
2 1

1 2, .
2 2

q q
r r  

 

We obtain 

 
2 1

2 2
1 2 .

q q

C e C e
 




    

Consider 

  0 0

1 2

1 2

0

.

C e C e

C C

  

 
 

Next, 

 

2 1

2 1

2 1

2 1

2 2
1 2

2 2

1 2

2 12 2
1 2

2 12 2
1 2

2 2

2 2

q q

q q

q q

q q

dC e dC e

d d

de de
C C

d d

q qd d
C e C e

d d

q qd d
C e C e

d d

 

 

 

 


 

 

 
 

 

 









  

 

   
    

   

   
    

   

 

2 1

2 12 2
1 2 .

2 2

q q
q q

C e C e
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Then 

  0 02 1
1 2

2 1
1 2

2 1
1 2

0
2 2

2 2

.
2 2

q q
C e C e

q q
C C

q q
C C

 
   

 

 
  

 


 

 

Let  0 0.M    We have 2 1
1 2 0

2 2

q q
C C


   

 

Multiply above equation by 2, we get  

 

2 1
1 2

2 1 1 2

1 2 2 1

1 2
1

2

2 2 0
2 2

0

.

q q
C C

q C q C

q C q C

q C
C

q

   
    

   

  





 

 

From  1 2(0)M C C   

            1 2
2

2

q C
C

q
   

 

Then  
 

1 2
2 2 2 2

2

(0) ( )
q C

q M q q C
q

   

                1 2 2 2q C q C   

                2 1 2( ).C q q   

 

Since   

1q E       and     2 ,q E    
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then   

1 2 ( ) ( )q q E E         

              E E   

            2 .E  

 

Thus   

2 2(0) 2q M C E  
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2
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.

2

q M
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E
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1 22 2
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Next, we calculate 
1 2q q  

  
1 2 ( )( )q q E E       

           ( )( ) ( )( ) ( )( ) ( )( )E E E E             
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          2 2E    

           
2
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Consider equation (3.1.5) 

  ( ) ( )A B C            

Integrating with respect to   

0 0
( ) ( ) ( )

t t

A B s ds C s ds           

2 20 0

( ) ( )

( ) ( )
2 2

t tG s M s
k ds k ds

G s M s
    

 

   
    

      
   
   
   

   

2 20 0

2 2( ) ( )

( ) ( )

v v G s M s
ds ds

G s M s

 
    

 

 
     

0 02 2

2 2
ln ( ) ln ( )v v v v

s sG s M s    
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2 2
ln ( ) ln (0) ln ( ) ln (0)v v G G M M    
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2 2
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. 

The proof is now completed. 

 

3.2  A Formula for European Option Pricing 

Let C  denote the price at time t  of European style call option on the current 

price of the underlying asset tS  with strike price K  and expiration timeT . 

The terminal payoff of a European call option on the underlying stock price tS  

with strike price K  is 

max( , 0).TS K
 

This means that the holder will exercise his right only if TS K  and then his gain is 

.TS K  Otherwise, if TS K , then the holder will buy the underlying asset from the 

market and the value of the option is zero. 

Assuming the risk-free interest rate r  is constant over the lifetime of the 

option, the price of the European call at time t  is equal to the discounted conditional 

expected payoff 

( )( , ) [max( ,0) ].r T t

T M T tC t S e E S K F    
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Assume that 0t   and we define lnT TL S  and ln .k K  Moreover, we express the call 

price option  0,S  TC as a function of the log of the strike price K  rather than the 

terminal log asset price TS . The initial call value ( )TC k  is related to the risk-neutral 

density ( )Tq l  by 

    ( ) ( ) ( ) ,rT l k

T T
k

C k e e e q l dl


                (3.2.1) 

where ( )Tq l  is the density function of the random variable TL .  It was mentioned by 

Carr and Madan [12] that ( )TC k  is not square integrable. To obtain a square integrable 

function, they introduced the modified call price function ( )Tc k defined by 

                                             ( ) ( )k

T Tc k e C k                 (3.2.2) 

for some constant 0   that makes ( )Tc k  is square integrable in  k  over the entire real 

line and a good choice of  is that one fourth of the upper bound 1[ ] .TE S    Consider 

the Fourier transform of ( )Tc k   

( ) ( )iuk

T Tu e c k dk



   

          ( ) ( )iuk k rT l k

T
k

e e e e e q l dldk
 




    

          (1 )( ) ( )
l

rT l k k iuk

Te q l e e e dldk 


  

 
    

          
( 1 ) ( 1 )

( )
1

iu l iu l
rT

T

e e
e q l dl

iu iu

 

 

   






 
  

   
  

          
( 1 ) ( 1 ) ( 1 )( ) ( )

( )
( )( 1)

iu l iu l iu l
rT

T

iu e e iu e
e q l dl

iu iu

   

 

     






    
  

   
  

                      
( 1 )

2 2
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iu l
rT

T

e
e q l dl

iu u iu
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2 2
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(2 1)

rT
iu l

T

e
e q l dl

u i u



  




 




      

                      ( ( 1) )

2 2
( )

(2 1)

rT
i u i l
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e
e q l dl

u i u
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2 2

( , , , ; ( 1) )
( )

(2 1)

rT

T

e f l v t x u i
u

u i u

 


  

   


   
 

where f  is the characteristic function defined in Theorem 3.1. 

 

Lemma 3.2  Let 0.   The Fourier transform of ( )Tc k  exists if  1 .TE S     

Proof.  Note that 1

TE S     implies 

(0) ,T         (3.2.3) 

since 

2

( ( 1) )
(0)

rT

T

e f i


 

  



 

1

2

rT

Te E S

 

   



, 

where the last equality follows from 

 

( ( 1) ) ln( ( 1) ) [ ]Ti i Sf i E e       

          
( 1)ln[ ]TSE e   

          1

TE S    . 

We have the equality 

(0) ( ) ,T Tc k dk



   

which follows from 

( ) ( ) .iuk

T Tu e c k dk



   

 

Combining this with (3.2.3) completes the proof. 

 

Hence, the European call prices at time 0t   with strike price lnk K  can then be 

numerically obtained by using the inverse transform: 
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( ) ( )
2

k
iuk

T T

e
C k e u du












                 

           
2 20

( , , , ; ( 1) )

(2 1)

k rT
iuke e f l v t x u i

e du
u i u

  

   

 


   


    .                 (3.2.4) 

Integration (3.2.4) is a direct Fourier transform and lends itself to an application of the 

Fast Fourier Transform (FFT), which has also done in Carr & Madan (1999). 
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