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ABSTRACT

It is widely believed that the volatility of asset returns tends to be time varying
and occasionally clustered, which leads to various stochastic volatility models. The
assumption of constant intensity is relaxed to allow stochastic intensity. Combinations
lead to stochastic volatility and stochastic intensity models, as well as jump-diffusion
with stochastic volatility and stochastic intensity models.

In this thesis, a jump-diffusion combined with stochastic volatility model and
stochastic intensity is considered and its presentations include: the dynamics of asset
price in which the asset price follows a geometric Brownian motion, compound Poisson
processes with the stochastic volatility following Heston model, and the stochastic
intensity following mean reverting process.

A formula of the European option is calculated by using a technique based on
the characteristic function of the underlined asset which can be expressed in an explicit

formula.

Keywords: jump - diffusion model, stochastic volatility, intensity, characteristic

functions.
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CHAPTER 1
INTRODUCTION

A financial derivative is a financial instrument. The value of derivative
determined by the price of something else that called the underlying. Example: Options,
Futures, Swap. A call option gives the right to buy the assets whereas a put option gives
the right to sell the asset at a strike price. European options can only be exercised at
expiration date. American option can be exercised any time during the life of the option.
The problem of pricing the option and modeling of the underlying assets. How much
should the buyer pay for the option? How do we model the underlying asset specific on
a stock price?

In 1973, Fischer Black and Myron Scholes explain if option are correctly
priced in the market, it should not be possible to make sure profits by creating portfolios
of long and short positions in option and their underlying stocks. Using this principle, a
theoretical valuation formula for options is derived.

In 1993, Heston use a new technique to derive a closed — form solution for the
price of a European call option on an asset with stochastic volatility. The model allows
arbitrary correlation between volatility and spot asset returns.

In 1996, Bates developed for pricing American potions on stochastic volatility
jump - diffusion processes under systematic jump and volatility risk. We are interested

in seeing to what extent the Bates model.

1.1 Purpose of the Study

1.1.1 To investigate the option pricing for jump - diffusion with stochastic
volatility and intensity.

1.1.2 To find a closed - form solution for European call option of jump -

diffusion with stochastic volatility and intensity.

1.2 Theoretical Perspective
1.2.1 Basic Stochastic Processes

1.2.2 Elementary Stochastic Calculus



1.3 Delimitations and Limitations of the Study

For this thesis, we have the scopes and the limitations of studying which are
concerned to the previous works which are:

1.3.1 To investigate the option pricing for jump - diffusion with stochastic
volatility and intensity.

1.3.2 To find a closed-form solution for European call option of jump -

diffusion with stochastic volatility and intensity.

1.4 Significance of the Study
Option pricing for jump - diffusion with stochastic volatility and intensity is

presented by using stochastic calculus.



CHAPTER 2
LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the
jump-diffusion model, stochastic volatility, intensity, characteristic functions which are
used in this thesis.

2.1 Option

2.1.1 call option is a contract to buy at a specified future time a certain
amount of an underlying asset at a specified price.

2.1.2 put option is a contract to sell at a specified future time a certain
amount of an underlying asset at a specified price.
According to terms on exercise in the contract, options have the following types:

- European options can be exercised only on the expiration date.

- American options can be exercised on or prior to the expiration date.

Define Kand T are strike price and expiration date respectively, then an option’s payoff

(value) C(T, S) at expiration date is:
(S; — K)y'=max(S;, — K,0) (call option)
(K-=S;) =max(K - S;, 0) (put option)
where S; denotes the price of the underlying asset at the expiration date t =T . Option

is a contingent claim. Take a call option as example. If S, , the underlying asset’s price

at expiration date, is higher than the strike price K, then the holder of the option can
exercise the rights to buy the asset at the strike price K (to gain profits). Otherwise, the
option is a worthless. That is
S;—-Kif §; >K
C(T,S;)=

0 otherwise.



In the case of S; > K the option is called “in the money”. It is said to be “out of
the money” if S; <K. If S; =K, it is “at the money”. Similarly, the payoft function is
(K —S;)" for a European put option.

The price paid for a contingent claim is called the premium. When the option
Is traded on an organized market, the premium is quoted by the market. Otherwise, the
problem is to price the option. Also, even if the option is traded on an organized market,
it can be interesting to detect some possible abnormalities in the market.

Taking into account the premium, the total gain of the option holder at its
expiration date is[Total gain] = [Gain of the option at expiration] - [Premium] i.e.,

Total gain = (S, — K)" - premium (call option)

Total gain= (K —S;)"- premium (put option)
As a derived security, the price of an option varies with the price of its underlying asset.

Since the underlying asset is a risky asset, its price is a random variable.

2.2 Stochastic Process
Definition. [11] A stochastic process X is a collection of random variables
(XpteT)=(X (@), teT, weQ),

defined on some space Q.

2.3 Brownian Motion
Definition. [11] A stochastic process W =(W,,t €[0,o0)) is called standard

Brownian motion or a Wiener process if the following conditions are satisfied:

(1) It starts at zero: W, =0.

(2) Forevery t>0, W, has anormal N(O,t)distribution.

(3) It has continuous sample paths: “no jumps”

10



2.4 1t6 Formula [15]

Suppose that F(t,x) is a real — valued function with continuous partial
derivative F(t,x),F,(t,x)and F_(t,x)for all t>0and xeR. Then F(t,W,)is an It6

process such that
T 1 T
F(TW,)-F(OW,) =, F(LW)+ o (LW) Mt [ F & w)dw,.
In differential notation this formula can be written as
dF (¢, W) :(Ft (t,Wt)+% Fxx(t,Wt)jdH F, (t,W,)dW,

where
dt-dt =dW, -dt =dt-dW, =0
and
dW, -dW, = (dW, )’ =dt.
2.5 Poisson Process
Definition. [11] A stochastic process (N,,t €[0,)) is called an homogeneous

Poisson process or simply a Poisson process with intensity or rate A > 0 if the following
conditions are satisfied:

(1) Itstartsat zero: N, =0.

(2) It has stationary, independent increments.

(3) Forevery t>0, N,has a Poisson Poi (At) distribution.

2.6 Probability
2.6.1 Definition. [11] The collection of the probabilities

F, (X) =P(X <x) = P({o: X (@) < x}), X & R=(-00,00) ,
is the distribution function F, of X .

2.6.2 Definition. [11] Most continuous distributions of interest have a density

F0)=[" T (y)dy, xeR,

11



where
f, (x)>0 forevery xeR and f f, (y)dy =1.

An important continuous distribution is the normal or Gaussian distribution N(z,o?)

with parameters u R, o’ > 0. It has density

f. (x)= ! eXp{—(X_ﬂ)z},XGR.

270 207

2.7 Random Variable

Theorem. [13] Let X be a random variable and let Z =g(x)for some
function g.

Suppose X is continuous with probability density function (pdf) f, (x).

If f ‘g(x)| f, (X)dx < oo, then the expectation of Z exists and it is given by

E[Z]= ji g(x) f, (x)dx.

2.8 The Normal Distribution [13]
We will proceed by first introducing for applications and for statistical
inference, in through it the general normal distribution.

Consider the integral

w 1 —Zz
I =LOT”exp(T)dz. (2.1)

The integral exists because the integrable function, that is,

0< exp(_—;J s exp(—|z|+1), —0< Z <o,
and
I:exp(—|z|+l)dz:2e.

To evaluate the integral 1, we note that | >0and that 1° may be written

12



1 = o 7° + W
1?=— exp| — dzdw.
272- J‘—ooJ‘—oo p( 2 j
This iterated integral can be evaluated by changing to polar coordinates. If we set

z=rcos@and w=rsiné, we have
1 27 poo 2
I2:2— ) IO e ’rdrdeg
T

I
27 ¥0

=1.
Because the integrand of display (2.1) is positive on R and integrates to 1 over R, itisa
pdf. of a continuous random variable with support R. We denote this random variable

by Z . In summary, Z has the pdf.,

1 =7?
f(2) :Eexp[7} —0<Z <0,

Note [13] X has N(u,o?) distribution if and only if Z X7 hasa N(0,1
(o2

distribution.

2.9 The Stock Price Process [14]
It is generally assumed that stock price follow geometric Brownian motion

under the real world measure P,
dS, = S, udt +S,odW, (2.2)
where zeR and S, c€R", W, is Brownian motion and the process is defined on
[0,T].Equation (2.2) is known as Black — Scholes model or diffusion model.
A solution S, , to this equation can be found with the help of Ito’s formula.

Let f(t,x)=In(x). It follows from that f(t,x)eC?([0,0)xR). Fortunately, if we

assume that S, e R", we can define f(t,x) e C*([0,0)xR"). We have

L

1
din(S) =405~
t

t

(ds,)’.

13



By 1t6 Formula,

2
af = at+ Pas, + 191 (gs,y?
ot OX 2 OX

10°f
EW (St/,ldt + StO_dV\/t)2

of of
:Edt'F&(St/Jdt'FStO'th)-i—

=0+ Si (S,udt + S,cdW,) —2—;2 (S, udt +S,odW., )

t t

= si (Sudt +S,0dW,) —z—éz (S udt +S,0dW,)?

t t

= Si (S udt +S,odW,) — %[(St,udt)2 +28, 1S,cdW,dt + (S,cdW,)?]
t

t

1 1 1
=( S ,udt+S—Stdth)—2—Sz[(St2,u2 (dt)? +2S,8,5dWdt + S6? (dW,)° |

t t t

= pdt + odW, —%[ 12 (dt)” + 2o dtdW, + o (dW,)° |
1,
= udt + odW, —EG dt
1,
= ('U_EG )dt + odW,
which integral notation is
diIn(s,) = (,u—%az)dt +odW,
t t 1 t
jod In(S,) :jo (,u—EO'Z)du +jo odW,
t 1 t
In(S,) - In(S,) :jo(y—EUZ)dwjoadwu

= (,Ll—%O'Z)J‘tOdU +GI; dw,

t

+ oW,
u=0

t

u=0

1,
=(u—-=0o)u
(ﬂz)

= (u—%oz)tmwt- (2.3)

14



The solution S, is

S 1
In| =+ |=(u—-=0°)t+oW,
[SOJ (u 20) t

St 1
e'"[soj _ g

i_ (,u—%az)HoW[
S0
1,
(u—=o°)t+oW,
— 2
S, =S8

1
S, =S, eXp((,u—EUZ)t+G\Nt).

Thus by assuming that the stock price follow the geometric Brownian motion
described in equation (2.2), we are also assuming that the stock price is lognormally

distributed. There are ample empirical evidence to support this assumption. This means
that from equation (2.3)

= N{ine -2 o)

The next aim is to find a probability measure under which S~t :i IS a

t

martingale , called the risk — neutral probability measure. The discounted process

NS
_ (u— o )t+oW,
=e"S, e ? ‘
1,

(y—Ea Yt+oW, —rt
1,
(,ufl’—EO' Yt+oW,

That is,

S, =S, exp((u— r—%az)t+owt)

where B, =e" and r is the constant risk-free rate of interest.

15



To get the stochastic process driving §t =S,e™", we again use Ito’s formula
df (t,S,) =dS,
=d(Se™)
=S,de™" +e"dS,
=S, (e™)d(-rt) +e™" (S,udt + S,odW,)
=S, (e")(-r)dt+e " (S,udt +e S, cdW.)
=-rSe "dt +e™"S udt +e"S,cdW,
=(u-r)Se"dt+e™"S,adW,
= (u—r)S,dt + S,odW,.
Thus
dS, = (u—r)Sdt +S,cdW, .

2.10 Girsanov’s theorem [14]

Girsanov’s theorem is used to transform stochastic processes in terms of their
drift parameters. In option pricing, Girsanov’s theorem is used to find a probability
measure under which the risk-free rate adjusted stock price process is a martingale.

2.10.1 Definition. Let v=Vv(S,T) be the class of functions

f(t,w):[0,0)xQ—>R
such that

1. (t,w) > f(t,w)is BxF -measurable, where B is the Borel sets on [0,x).

2. f(t,w) is adapted.

3 EDOT f(t,a))zdt]<oo.

2.10.2 Theorem. Girsanov’s theorem. Let X, e R be an Ito process, of the

form
dX, = St w)dt +6(t, 0)dW,

16



with t <T <oo. Suppose that there exist a v(t,®)-process u(t,w) e R and
a(t,w) e R such that

o(t, o)u(t, ) = B(t, w) — a(t, w).
Since we are only looking at the on dimensional case,

) = L, o)—a(t,w)
T 0te)

u(t,w

We further assume that

E, {exp G J.OT u’(s, a))ds)ﬂ <o,

Let
M, :exp(—j;u(s,w) dw, —I;uz(s,a))ds)
and
dQ=M,dP.
We then have that

Wt :Wt+I;u(s,ca)ds

is a Brownian motion with respect to Q. X, in terms of W, is
dX, =a(t, ®) +o(t, a))dV\~/t ’
Ito’s clear that the process S, has a trend, (x—r)S,. This trend causes S, not to
be a P -martingale (a martingale under probability measure P ).

The risk - neutral probability measure is found by employing Girsanov’s

theorem. By using the notation of the Girsanov theorem we can define, for the

process S, .

u(t,a)):%
_(u-1)
(2

17



Note that a(t,w)=0 and u(t,w)=uis a finite scalar since we assumed that o is
strictly positive. The result of this is that is met and u e v(t, ).

Since

E, {exp(%_[T u’(s, a))ds)} =E, {exp[%r (u_—rj dsﬂ < oo, (2.4)
0 ol o

M, was defined in Theorem 2.10.2 as follows.
t t 2
M, :exp(—_[ou(s,a))dws ~[lu (s,a))ds). 2.5)
In this case, for u(t,®) =u
M, = exp(—_.:udWs —J';uzds)

t
—u?s

t

— oUW -Wo]-U*[t-0]

e R

The new measure, the risk- neutral probability measure can be defined as
dQ=M,dP.

We can define a new process

W, =W, +j;u(s,a))ds

=W, +I;uds

t

=W, +us
s=0

=W, +u[t—0]
=W, +ut
which isa Q — Brownian motion. The original processS, , in terms of W, is
dS, = (u—r)S,dt + oS,dw,

= (u—-r)S,dt + 5S,d (W, —ut)

18



dS, = (u—r)S,dt + oS, (d W, —udt)

= (u—r)S,dt+oS,dW, — oS udt

~ (u-n)Sdt+ oS - o8 K= g
O

= (u—-r)S,dt + oS, dW, — S, (u—r)dt

=S, dW..
The scalar u(t,s) _HT is also known as the market price of risk. If x=r, then the
O

investor is called risk — neutral and dQ=dP.

Since

and
M, = exp(—ﬁu(s,a))dws = I;uz(s,w)ds).
In this case, for u(t,®) =0

M, = exp(—ﬁ udw., —L: uzds)

0

and

dQ =M. dP.
We have

dQ=dP.

Under the measure Q we price instruments as if they are risk- neutral.

2.11 Heston model [7]

The Heston model assumes that S, , the price of the asset, is determined by a

stochastic process:

19



dS, = uS,dt+ Jv, S,dw;’

where x>0, v, the instantaneous variance is a CIR process:
dv, = k(0 -V,)dt + o\ v, dW,’
where x>0, >0, >0 and W,*, W, are Brownian motion with correlation p .

2.12 Bates model [1]

Bates introduced an efficient method is developed for pricing American options
on stochastic volatility jump-diffusion processes under systematic jump and volatility
risk. The exchange rate S, satisfy the following process:

dS, = S,dt + /v, S, AW +kdN,
dv, = k(0 -V,)dt + o\ v, AW,
where kis the random percentage jump conditional on a jump occurring and N,is a

Poisson process with constant intensity A .

2.13 Feynman-Kac Formula [12]

Let a,b and g be smooth, bounded functions. Let X solve the stochastic differential
equation

dX, =a(t, X,)dt+b(t,X,)dW,
and let

u(x,t)=E[g(X;)|X, =x].

Then u is a solution of
1.,
u, +au, +§b u, =0

u(x,T)=g(x)
fort<T.

20
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CHAPTER 3
RESEARCH RESULT

In this chapter, we present the results of jump - diffusion with stochastic

volatility and intensity.

3.1 Option Pricing for Jump-Diffusion with Stochastic Volatility and Intensity
The propose model assumes that the underlying asset has the following

dynamics under risk-neutral measure,

% = (r—Am)dt+ /v, dWS® +Y,dN, )

t
dv, = &, (6, —v,)dt + o\ /v, AW’ ; (3.1.1)
d4, =x, (0, = A)dt +&\Jv, AW, )

where S, is the price of the stock, ris the risk free rate, m is the expected of Y,, v, is
the instantaneous variance, x, is the rate at which v, reverts to 6,, 6,is the long
variance, ois the volatility of the stock’s returns, Y, is jump size with normal
distribution, N, is a Poisson counter with intensity A, W.° and W,” are Brownian
motion with correlation p . For the intensity dynamics we have: «, is a mean-reverting
rate, 6,is the long term intensity, ¢ is a volatility of jump intensity and W is a

standard Brownian motion. We assume that jump process are independent of

W.*,W,"and W,*. A standard Brownian motion W,* is independent of W,*and W," .

Denote the characteristic function for X, =InS; as

ixX

f(v,Atx)=E[e" | X, =1v, =V] (3.1.2)

where 0<t<T and i:\/—_l. Then, the following theorem holds.



Theorem 3.1 Suppose that S, follows the dynamics in (3.1.1). Then the characteristic

function for X, defined in (3.1.2) is given by
f(I,v,A,t;x) =exp(ixl +ixrz+ A(z) + B(z)v+C(7) 1)

2k.,0 et | 2k, g,

K, r.e +re K € +0Q,€e

where A(r) =5t |n| b A A
o 2H P 2E

n+re qleiET +0,

B(r)=(u2—u)(itj, cupw[i}, U =ix

r,=(x,—pou)+H, r,=—(kx,—pou)+H, H:\/(Kv—pau)z—az(uz—u)

Q=K +E, Q=—x,+E, E=KX—2:°F F=-mu+[" (e” -1 (y)dy

and @, (y) is a density of random jump size Y,.

Proof Feynman-Kac formula gives the following PDE for the characteristic function

(r—%v—im) f +%vf,, 1 (0, =), +%62va 4 povf, +1,(0, —W)f,

+%gzifM +A.|.i[f (I+y,v,4,t,9)- f(l,v,1,t;8)]¢, (y)dy + f, =0, (3.1.3)

f(,v,A,T;x)=e".
Consider for the characteristic function:
f(I,v,A,t; x) =exp(ixl +ixrz + A(z) + B(z)v+C(7) 1) (3.1.4)
where 7=T —t and A(z=0)=B(z=0)=C(z=0).
We plan to substitute equation (3.1.4) into equation (3.1.3). Firstly, we compute
fi, f f i, T f T

I “ve L \VR)
That is

f _ g (eixl+ixrr+A(r)+B(r)v+C(r)i)
ol

= MIHXTHA)+B(OVC ()4 %(m +ixre + A(z) + B(r)v+C(2)A)

_ eixl+ixrr+A(r)+B(r)v+C(rM (IX)

22



fl _ ixeixl+iXI’f+A(f)+B(‘r)V+C(‘r)/1

=ixf

0 .
ol
_ 0 iy T A HB(VC ()2

al

i 0 QX +XTTHA(D)+B(D)V+C ()2

ol
= ix(ixf)
—i%xf

=—x°f,

f, = XHrTrATB(rvC (D)4 % (ixl +ixrz + A(r) + B(r)v+C(2) 1)

_ B(Z’)eiXI +ixrz+A(z)+B(z)v+C(7) 4
= B(o)f,

0
f.=—B()f
w T oy ()

_ 0 B(r)eX A BEVIC()2

=B(7)(B(z) )
=B%(0)f,

f = 0 iy XHHTT AR HB(EVC ()2

\'

= ixe X HA@B(TV+C () % (ix] +ixrz + A(r) + B(r)V+C(2) )

— ixB(T)eixl+ixrr+A(r)+B(r)v+C (r)A

23
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f, =ixB(z)f ,

-C (T)eiXI +ixrz+A(7)+B(7)v+C(7) A

—C(0)f

0
f,, =—C()f
AA EY) ()

oA

_C(2) 0 QX +TTA(D)+B(D)V+C () A

=C(7)[C(r) ]
=C?%()f,

fi=e

= (ixr —

ixl+ixrz+A(7)+B(z)v+C (7)1

ixl+ixre+A(7)+B(z)v+C(7) A

9 (i
o4

i C( )elxl+|xrr+A(r)+B(z-)v+C(z-)Z

%(ixl ixre+ A(Z) + B(o)v +C(2)A)

or 8A(T) aB(z')V 8C(z-)/1

+ixrz+ A(r) + B(z)v+C(7)A)

ot

Consider the following

8A(r) ar
ot

t)

A()—

ot

24

(3.1.4.5)

(3.1.4.6)

(3.1.4.7)

(3.1.4.8)

(3.1.4.9)



g B(r)v = v% B(7)
[20.2)
or ot

8(T —t)
ot

=VB,

=-B,v,

%C(T)l = ﬂ%C(T)

:/I(GC(T)‘QJ
or ot

zicTM
ot

=-C.A,

Thus
f,=(ixr—A —Bv-CA)f
Consider
f (l + y v l t: X) N/ e.ix(l+y)+ixrr+A(r)+B(r)v+C(r)/l

We have

(3.1.4.10)

(3.1.4.11)

(3.1.4.12)

f (| +V,V, ﬂ,t, X) —f (l,V, th, X) — eix(l+y)+ixrr+A(r)+B(r)v+C(r)/1 _eixl+ixrr+A(r)+B(r)v+C(r)ﬁ

_ @+ AGHBVAC (D)2 qiX+ixrr+ A+ B(r)v+C (1) 2

iXI+ixre+A(2)+B(r)v+C(z) A _ Aixl+ixrr+A(7)+B(7)v+C(r) 4

:eixy.e e

— eixl+ixrr+A(1)+B(r)v+C(r)ﬂ. (eixy _1)

=" -f. (3.1.4.13)
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Substitute (3.1.4.1) — (3.1.4.13) into (3.1.3),

(r—%v—}tm)ixf +%v(—x2f)+1<v(0v _V)B(o)f +%azv82(r)f T povixB(r) f
+x,(0, - )C(r) f +%52102(r)f +/1J'_w [(e"™ -1) g (y)dy—(ixr+ A +BVv+C 1) f =0
Let ix=u, then
1 1 2 1,
(r—Ev—/lm)uf +§v(—x f)+x,060,-Vv)B(r)f +EG vB“(7) f + povuB(7) f

+x,(0, - A)C(r) f +%82/1C2(f)f +/”L.|._0;[(e“y ~1)f14, (y)dy—(ur+A +Bv+C_2)f =0.

Sinceix=u, then (ix)* =u®
iZXZ :u?_
x? =2
We have

{(r —%v—lm)u +%vu2 +x,(0, -V)B(z) +%02v82(r) + povuB(z) +«, (6, — 2)C(z)
+%52/1(:2(r) +A[" (@7 =D (y)dy -ru-A - BTV—CTA} 20
So,

r —%v—im)u +%vu2 +.(8,-V)B(z) +%02VBZ(T) + poVUB(z) + ., (0, — A)C(z)

+%gzzcz(r)+;tj°° (€ —1)¢ (y)dy—ru—A —Bv—C,1=0.
Then

ru —%VU —Amu+ %vu2 +x,0,B(7) —x,B(7)v +%0'2VB2 (v) + povuB(r)

+x,0,C(r) - Ax,C(7) %52/1(:2(1) +4[ (€ -1, (y)dy-ru-A -By-C,A=0.
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That is

—%vu —Amu+ %vu2 +x,0,B(r)— K‘VB(T)V+%O'2VBZ (7)

+povuB(7) +x,0,C(7) — Ax,C(7)

+%522,C2(r) +/1j.w ¥ -D¢, (y)dy=A +Bv+C 1.
Consider

(—%vu +%vu2 —K'VB(Z')V-F%O'zVBZ(T) + poVuB(z))

+(% e2AC (1) + A jfo (&% —-1)¢, (y)dy — Amu —ﬂKﬂC(r)j

+(x,0,B(r)+x,0,C(r))=A +BVv+C_.A
We obtain

[—%u +%u2 —-x,B(7) +%GZBZ(T) +p0'uB(r)jV

+6 £2C2(r) + ji (€% —1)¢ (y)dy —mu —KAC(r)jA

+(x,0,B(z) +x,6,C(r))= A +Bv+C_A.
This leads to the following system:

A =x,0,B() +x,0.C(r)

B = —%(u —u?)—(x, — pou)B(z) +%O'ZBZ(T)

3\ =%52c2(r) i CE-mu+ [ (€ - (y)dy.

In the equation (3.1.6) become a Ricatti equation.
B, = —% (u-u?)—(x, — pou)B(z) +%UZBZ(T).
G'(z)

2

‘;G(r)'

Let B(r)=-

27

(3.1.5)

(3.1.6)

(3.1.7)



We obtain
d

m B(r) = _—(u —u?)—(x, — pou)B(r) +%O‘252(7)

or

i e ,
iZG(T) ’
2 :—l(u u’)—(x, - pou)| - G(T) NP —& (3.1.6.1)
dr 7(3( )| 2 )
We have
| dG'(7)
O-—ZG(Z') o 1
Zdr [ G(r)—(G(T) G()—(—G( ))j—z
oo
[ G()G"(1)-G'() % dG(T)] 7=
2 d(o) ING
2 “i ¢
(L eoerto- Loy | L
2 2 o
[2 (T’]
[ G()G" (r)——(G( ) j; (3.1.6.2)
9 G2 (7)

4
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Substitute (3.1.6.2) into (3.1.6.1)
1

( G(r)G’ (T)——(G( )’ J

76'0)

2

S0 |1 6O

=——(u u?) - (x, — pou)| -

76| * | 76
We get
O e A i
—G() Z-G*(r)

4

G'(T) L1 (G (0)’°

—Gu ~2 A—Gu

=——(u u®)+(x, — pou)

This is

266" ()| ~—— |- T - [+5u-u)
760) 260

S0 |1 C@ |

—Gm 2" 760

—(x, — pou)

or

o’ G(r)G"(r) 1

-0 i), = po)|

5 6@ %0@

=0
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2
Multiply above equation by —%G(r),

_a_zw{__G( )J ;(u —u)(—_ZG(z')j (x, — pou) C') ( 5 —G(r )J

2 7-6%(0) 2 7G(r)
" 2
I CECW L u)[ o G(r)}—(m - pou) (-G'(r)) =
4 o 2 2
—G*(7)
4
2
G"(z) +[%(u2 —u)G(r)] —(x, - pou)(-G'(z)) =0
02
G"(7) +T (u* —u)G(7) +(x, — pou)G'(z) =0
2
G"(7)+((x, - pau)G’(r))+%(u2 _U)G(r) =0.
Write down the characteristic equation
2 0’2 2
—(ry —pou) £ |(xy — pou)” -4 T(U —u)
p= >
(1, = pou) =k, ~ pou)* — > (u* -u)
P =
2
~(, — pou) + (i, — pou)? - * (u? ~u)
Py = :
2
Next,
G(r) = CeP +C,eP”
(5, ~pov)—\(k,~pou)’ o (u*-u) (i, ~po)+\(,~pou)’ ~o* (u*-u)
=Ce 2 +Cpe 2
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(%, ~pou)y(x, ~pou)’ -o” (u*~u) (5, ~pou)(x,~pou)’ —o® (u”u) _

G(r)=Cee 2 +C,e 2

1 1
—Ce 2" +Ce?” (3.1.6.3)

where

h=(x,—pou)+H , H=(x, - pou)’ o> (u* -u)
r,=—(x,—pou)+H.
Note that nL+r =(x,—pou)+H—(x, — pou)+H =2H
nLr, =[(KV — pou) + H][—(K\, — pou) + H]
=H? —(x, — pou)?
= (k, — pou)? —=a*(u? —u) — (&, — pou)?
=—c?(u?-u).
The boundary condition
G(0) =Ce” +Cne°
=C, () +C, M)
=C,+C,.
Equation (3.1.6.3) become

-nr =

2t 2
de +G, de
dr dr

G'(r)=C,
1

1
-t d 1 nrod o1
=Ce 2 —(—=nr)+Ce2" —(=r
1 dr( 5 17)+C, dr(2 27)

1
i, 1 dr Ll dr
=Ce 2" (—=n)—+Ce?" —r,—
1 ( 5 1)dr 2 224z

—%rlr 1 %rzf 1
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From

1 —hr Erzf 1
G’(r)=—§C1e 27 +C,e? Er2,

we get
G'(0) =C,e’ (—% r)+C,e° % r,
= Cl(_% n)+C, % i
= —% rLC, +%r202.
Let G'(0)=0.
We have —% nC, + % r,C, =0

-1C, +rC,=0
r2C2 m rlcl
r2Cz //4

h

>

From G(0)=C,+C,.

It imply
6(0)=" 2 . c,
n
and
c -G
2 r2
we obtain

GO)r, =rC,+C,r,
=G, (n+1)
=C,(2H).
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That is

c, - 6O
2H
Note that
G(0)=C, +C,
rC
=C ++=.
r-2
Consider

,G(0)=Cir, +—(r1$1) L

2

=Cr,+1rC,
= Cl(r2 + rl)
=C,(2H).
That is
¢, -0
2H
We have
C, = GO and C, = 560 .
2H
Since
G'(r
B(r)=- = () X
—G
5 G()
then

Lo Lo
Ce ? (—; 1j+C2e2 ;rz

B(e) =i
7(Cle 2" 4 Ce?’)
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B(Z’)=—

r,G(0) 3% (_ 1, j LHG(0) o 1
1

2H 2 2H 2°
o*(,G(0) 3%, KG(0) v
2| 2H 2H

e Lo
_lr Me 2 +1r weZ

2" 2H 2% 2H

1
~ 2% (rre 2 —rre?”
2(2H)(12 1'2 )

o’ | 1,G(0) e%qr , KG(0) egw
2| 2H 2H

1

G(0)

o°G(0)
2(2H)

1 1
i Py
(ne ? +re? )

1 1
- Zht

T
1|rre? —rre?

1
—hLT

75 nhr 2 D
r,e +re

1 1
1| -c?U?-u)e 2" +o2(U?—u)e?”

1 1
—Erlr Erzr
e? +re

1
50 —Erlr Erzr
e
=—(u*-u)
_Erz _Erlr 2I'21
e r,e +re
[ ( 7%&1 7%|‘21') ( %I'ZT 7%’2‘!)
) g2 e —(e2° e
u-—u
( ) _%rlf _%rzf %rzf —%rzr
_rz(e e )+rn(e? e?2”)
e_(ﬁ‘;rz)r _eo
2
=_(u —U) _(r1+r2)1.
R 0
e 2 +re
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{3
B(T):—(UZ—U) eT]Tl
e '’ +r
=(uz—u)( 1_8:T}
I +1,e

Next, consider equation (3.1.7).

C = %EZCZ(T) —-x,C(z)—mu +J.j:0 e” =D¢, (y)dy.

Let

__ M@
C(gk= izM(T).
2

Similarly in B(z), we have

iC(T) = EEZCZ(T)—KAC(T) —mu +J-oo (¥ -D)g, (y)dy
dr 2 =

dl - M'(7) 2
8—2M(z’) ' /
2 Lo M@ ] MO [ e -0, ().
dr 2 > X N
?M(r) ?M(T)

(3.1.7.1)
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and

o MO
il\/l(r) 2 2
2 Mo LMo -min L
. - {ZM(r)dTM(T) M(r)dT(ZM(T))j

__3_2 T g_ZdM(r) 1
= (ZM(z—)M (7) M(‘r)2 i j(

=—(‘9—22M (r)M"(r)—%Z(M'(r»ZJZ—

:—(E—ZM(r)M"(r)—‘9—2<M'<r»2J -
? < £M(0)
4

Substitute (3.1.7.2) into (3.1.7.1)
_(S_ZM(Z')M”(T)—E—Z(M'(T))ZJ i 3

? : E M)

4

2352 _M K —M —mu+rc (e” D¢, (y)dy.

2 £ £ =

?M(T) ?M(T)
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We have

g—ZM(r)M"(r) —— 1 —‘9—2(M’(r))2 - :
2 %Mz(r) %Mz(r)
_1. _ZM’(T) —K, _ZM’(T) —mu+'|'i(e“y—1)¢Y(y)dy.
B EAYE o ME)
That is
8—2M(2')M”(z') -— ! —g—z(l\/l'(f))2 % ! Sl _zM’(T)
2 %Mz(r) 2 %Mz(r) 2 %M(r)
| - [ (@ -2t (y)dy =0
£ M(r)
2
or
EIMEOME | 2 (M@) | 1, M@ | | MO
2 M) 2 M) 3 LM CM@)

+mu — j"; (e —1)¢, (y)dy =0.

We get
LS MM | LM | g gy o
2| ¢ ) & —0
—M*(7) —M(7)

4 2
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2

Multiply above equation by —% M (7)

—£~M@MKQ[JiM@—M;_Mﬁj(iiM@]

2| e L2 Cme |2
+mu —%M(f)j—[—%wf) [~ -1, (y)dy =0.

Then

2

EIMOME) | v+ mu[—%M (T)j+£’9—; M (r)jj“; (e” D¢, (y)dy =0

4| & .,
—M
2 (7)

or

2

M" () +x,M’() —mu (% M (r)}{g—; M (r)] [~ -1, (y)dy=0

2
&

M”(z)+x,M'(z) + M (r)[—mu < +‘9—22 [~ -1g, (y)dyj =0.

Write down the characteristic equation

r’+de+e=0

2 3
-+ —\/rci —aemu® + S [ @ -0 ()
r;L —
2

K, - \/Kj —4(‘§j(—mu +[" @ -4, (y)dy)
B 2
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where

F=—mu+ j :";(e”y —-1¢, (y)dy

So, rl:—Kl—«/Kj—ZgZF ; K, Kl —26°F |

2 2 2
Let E=x’-2¢°F,q =-x,+E,qQ,=x, +E.
We have
q q
rl_—?z : rzzgl.
We obtain

G, 4,
M(7r)=Ce? +Ce?.

Consider
M(0) = Ce°+C°
= C,+C,.
Next,
U, 4,
2
M'(z) = dCe +dCZe
dr dr
U o,
2 2
_ ¢, de +C, de
dr dr
G, %
= Ce 2 d ( q21j+C292 (qlr]
T\ 2 dr\ 2

|
Q)
(¢»]
ol
TN
|
N o
N
~—
+
(@)
N
D
N |2
|_cz
=
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Then
M'(0) = Ce’ (‘7‘12) +Cet

2

—q q
22 C1+?1C2.

Let M'(0) =0. We have _—22C1+iC2 &P

Multiply above equation by 2, we get

[‘T%q}z{ %ch:o

_Q2C1 + chcz =0
qlcz = q2C1
A, _ ¢
a,
From M(0)=C,+C,
LG e
4,
Then
C
q,M(0) = s (g,) +9,C,
2
= q1C2 + qzcz
= Cz (ql + qz)-
Since

g=x,+E and 0,=—x«,+E,
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then

0 +0, =(x, +E)+(-x, +E)

=E+E
=2E.
Thus
q,M(0)=C,2E
qZM (O) — CZ.
2E
We obtain

%

%, %,
M(r)=Ce 2 +Cpe?

a, 2E

:i(sz(0>jeq;f+sz(o =
q,\ 2E 2E

_aM©O) 5 MO G-
2E 2E

Thus

PRNCARVIEEY

_ % 2E

=_ - - -
i &Cze 2 +M82
2\ 4, 2E
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[ j T[_q2J+ q,M (0) e%’ [%J
C(Z')=— 2 2E - 2

i ql(sz(o)j sz(O)

210, 2E 2E

q QZM(O) o7 Eq q,M (O) *T

2" 2E ' 2E

iz ChM (O) ’*T sz(O eizlr

2 2E 2E

M
( )quqze 2 _qlqzez

Q1

|

M (O) c|1
%, X
_i 0,0, * qlqze2
- 62 %, G4,
e 2 +ge’
g G Lo
_ i e 0,9,€ —0.0,¢€
g2l “lar —0y7 S
2 qle 2 + q2e2
B 14 lql, Los —qur
1 G,9.€ "N _q1q2e2 4
Z? 24 o ~Tar
ge2 e? +qge? e?
I\ _(qzﬂh »
:i qlqze ? _qlqzeo
2 O2+0
E S T
g€ ( QT
\ LE]
_ i 4,9,€ < — 49
g2 {2E),
Che %) +0,
:i q1q2e7ET — %9,
82 qle—Ez’ +q2

A
82 1412 qlefEr_'_qz ’

42



Next, we calculate q,q,
G0, = (x, + E)(=x, +E)
=[(x,)(=x,) + (E)(=x;) + (x,)(E) + (E)(E)]
=—x;—Ex, +x,E+E°

_ 2 2
=—x",+E

=—K§ +(,f1(f —2&°F )2
=—K +(K/21 —252F).

That is

C(T)=%(—252F){$}

Ge ~ +0,

™

Consider equation (3.1.5)
A =x,6,B(z) +x,0,C(z)
Integrating with respect to -

A(D) =x,0,[ | B(S)ds +x,0, [ C(s)ds

t
L e I ds
G —M
, G0 > M)
=_2;<V29V er(s) ds_zxﬂzel ITM (8) 45
o? Y0 G(s) g® 70 M(s)
2K,0 . 2x.,0, .
=— "LV ING(S)| Ly~ InM(8)| L
o &
2% O 2K,0
_ ’;,Zv[mG(T)_mG,(o)]_%[InM(r)—lnM(O)]
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Ar)=— 2k,0, In G(r) 2x,0, In M (7)
o’ G(0) &’ M (0)

—lfl‘r 1r22' ;qzz' iz—
__2Kv9v In Cle 2 +C262 _ 27(‘,191 In Cle 2 +C262
0'2 C1 + Cz 52 Cl + C2
LG(0) v , KG(0) ;v GM©) e, &,M(0) 3
=_2Kvgv In 2H 2H _2’(201 In 2E 2E
o LG(0) , KG(0) £’ 4M () , .M ()
2H 2H 2E 2E
G(O) —EI’T EI’T M(O) ;qzr ﬂz'
_ 20, 2H |ret are || 2,0, | o |Ge? +ae
o’ G(0) I+, pe M (0) 0, +0,
2H 2E

1

) e | |
K, 0 re? +re _2x,0, In| &€ ° *+%e

VVI

o’ 2H g’ 2E

The proof is now completed.

3.2 A Formula for European Option Pricing

Let C denote the price at time t of European style call option on the current
price of the underlying asset S, with strike price K and expiration timeT .
The terminal payoff of a European call option on the underlying stock price S,
with strike price K is
max(S; —K, 0).
This means that the holder will exercise his right only if S; >K and then his gain is
S; —K. Otherwise, if S; < K, then the holder will buy the underlying asset from the

market and the value of the option is zero.
Assuming the risk-free interest rate r is constant over the lifetime of the
option, the price of the European call at time t is equal to the discounted conditional

expected payoff
C(t,S;)=e""VE, [max(S; —K 0)|F1.
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Assume that t =0 and we define L; =InS; and k=In K. Moreover, we express the call
price option C(O,ST) as a function of the log of the strike price K rather than the
terminal log asset price S;. The initial call value C, (k) is related to the risk-neutral
density g, (I) by

Cr(k)=e" | ;o(e' —e“)q, (I)dl, (3.2.1)
where ¢, () is the density function of the random variable L. It was mentioned by

Carr and Madan [12] that C, (k) is not square integrable. To obtain a square integrable

function, they introduced the modified call price function c, (k) defined by

¢ (K)=e"C, (k) (3.2.2)
for some constant « >0 that makes c, (k) is square integrable in k over the entire real
line and a good choice of « is that one fourth of the upper bound E[S{*] < oo. Consider

the Fourier transform of c; (k)
vr(U)=] " e“c (k)dk
=f :ei“k | :e“ke‘” (€' —e¥)q, (dldk

=J.jo e—rTqT (I)J.j (e|+ak _e(1+a)k)eiukd|dk

» - e(oc+1+iu)| e(a+l+iu)|
= j e a, (1) = di

a+iu  a+iu+l

(a+1+iu)l (a+1+iu)l

w B . Z . (a+1+iu)l
:e’”_[_ (a+iu)e +e (a+iu)e }QT ()l

(e +iu)(a+iu+1)

e(o:+1+iu)l

}qT (i

e—rTJ‘Oo
- _ 2 ; 2 ;
“la”+2alu—U+a+iu

-7

€ ©(a+li)l
= e dl
a2+a—u2+i(2a+1)u-[—°° % (0

e—rT

_ ® ei(u—(a+l)i)| Ndl
a2+a—u2+i(2a+1)u-|-—°° % (0
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e (v, At x=u—(a+1)i)
a’ +a—-u’+i(2a+1)u

Yy (u)=

where f is the characteristic function defined in Theorem 3.1.

T

Lemma 3.2 Let o >0. The Fourier transform of c, (k) exists if E[S“”] <o,
Proof. Note that E[ Sy | <co implies

yw:(0) <o, (3.2.3)
since

e |f (~(a+D)i)

O =
|WT( )| a2+a

e-”E[s;“l]

a’ +a
where the last equality follows from
| (e +Di)|=[E[e ]
:‘E[e(aﬂ)lnST ]‘

%L P2\
We have the equality
wr ()= ¢ (K)dk,
which follows from

vr )= ecr (k)

Combining this with (3.2.3) completes the proof.

Hence, the European call prices at time t=0 with strike price k=In K can then be

numerically obtained by using the inverse transform:
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e—ak

CT (k) = o

[ ™y (u)du

(3.2.4)

ire“”k e’”f(I,v,ﬂL,t;x:u—(oz+1)i)du
90 a?+a—-u*+i(2a+1u '

Integration (3.2.4) is a direct Fourier transform and lends itself to an application of the
Fast Fourier Transform (FFT), which has also done in Carr & Madan (1999).
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Abstract: An alternative option pricing model is proposed, in which the asset prices follow the jump-
diffusion with stochastic volatility and intensity. The stochastic volatility follows the jump-diffusion.

We find a formulation for the European-style option in terms of characteristic functions.
Keywords: Jump-diffusion model, Stochastic Volatility, Intensity, Characteristic functions.

1. Introduction

In 1973, Fischer Black and Myron Scholes introduced, a theoretical valuation formula for options is
derived. In 1993, Heston studied a new technique to derive a closed — form solution for the price of a
European call option on an asset with stochastic volatility. The Heston model assumes that S, , the price
of the asset, is determined by a stochastic process:

oS, = uS,dlt -+ v, S, M
where ¢>0, v, the instantaneous variance is a CIR process:
av, = x,(6, =v,)dt + oy, AV, @

and &, > 0.6, > 0,0 >0, W,° ¥ are Brownian motion with correlation p .

In 1996, Bates introduced an efficient method is developed for pricing American options on
stochastic volatility /jump-diffusion processes under systematic jump and volatility risk. The exchange
rate S, satisfy the following process:

aS, = S, dt + v, S,dW,;” +kdN, (3)
dv, =k, (6, —v )+ oy,
where k is the random percentage jump conditional on a jump occurring and , is a Poisson process with

constant intensity A .
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2. Model Descriptions
The propose model assumes that the underlying asset has the following dynamics under risk-

neutral measure,

f—,’=<r—z,m>dz+\/§dw+xdzvf
b, = K,(0, —v,)dt + v, dW;
dl, =x,(0, — A )dt + e fv,aw;? )
where S,, v,, &,, 6,, 0, Y,, N, W7 and W are define (1), (2) and (3). 7 is the risk-
free rate , m is the expected of ¥,, &, is a mean-reverting rate. We assume that jump process 2V, are

independent of I, , ;" and I¥,”. A standard Brownian motion I¥,” ,J¥,” and 7" are independent.

3. Characteristic Functions
Denote the characteristic function as
FAv A tx)=E[5 | X, =1y, =v] 5
where 7 >1¢ and i = \/—_l . Then, the following theorem holds.
Theorem 3.1 Suppose that S, follows the dynamics in (4). Then the characteristic function for X,

defined in (5) is given by

SUAv, 2.t x) =exp(ixl +ixrt + A(T)+ B(z)v + C(1)A) ,

1 1 1 1
Sk 2GF —ar Y
2, NS »uo) 2% 2 2
where A(t)=- szf)v i EASTAS - “1201 T RS e b
o 2H £ 2F
35771 _Er
B) = B RS NG A~ Fa ) WA
rtne g, +g,e

5 =(k,—pow)+H , r=—(x,—pouw)y+H, H =\/(ICV —pou) =o' —u)
g =x;,+E, ¢ =—K,+E, E=,/1cj—2a'1F , F=—mu+ j (@ =D, (y)dy

and ¢, (y) is a density of random jump size ¥, .

Proof Feynman-Kac formula gives the following PDE for the characteristic function

(r—%v—ﬂm)ﬁ+%vﬁ, + RN +%o’2vfw W YA

L ssr o 4F ,
¥ S8yt [ra+yv.aeh)— FLv. Al (Ddy+ 1, =0, ©)
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FUv, 2 Tx)=¢".

Consider form for the characteristic function:
S, At x) =exp(ixl +ixrt + A7)+ B(r)v+ C(7)A)

where 7 =7 -t and Az =0)=B(z=0)=C(r=0).

We plan to substitute equation (7) into equation (6). Firstly, we compute
fi=uf, fy==2f, f,=B@)f, [, =B*(©)f, [, =ixB()f, [,=C(®D)f .
Lu=C*'(D)f, fi=(-ixr-4 -By-CA)f,
fd+y,v,,t;x)— f v, Lt;x)=€e" [ .

Substitute all terms above in equation (6),

(r —% v—Am)ixf + %v(—xzf) +x,(0,— v)B(r)f+%O'2vB2(7:)f + povixB(t) f
+i,(8, - M)C(T) f + %82/16'2(1) f+A f? ¥ (»)dy—(ixr+ A4, +By+C.A)f =0,

Let ix = u, then

(r— % v—Am)u +%vu2 +x,(0, —v)B(1)+ % B (1) + povuB(t)
+x,(0, —Z)C(r)+%z:2/1C2(r)+lj e?¢, (y)dy—ru—A —Byv—-C.1=0.

We have
A, +Byv+C A= k,0,B(t)+x,0,C(7)

+(]Eu2 —]Eu —KVB(1)+]EG'ZBZ(':)+p0'uB(r)]v

+[% 1CH (1)~ Kk, C(z)—mu + ]' €V =g, (y)dy] A.

—c0

This leads to the following system :
A, =x,0,B(t)+x,0,C(t)

B, = =2 4=y =(x, = pou)B(r)+ 5 B (7)

&= %ngz(r) —k,C(t)—mu+ _[ € =D, (»)dy .

T
—0

In the equﬂtion (9) become a Ricatti equation. Let
"v/( )
B(r)=-———=2_ (;1
—G(7
2 ()

>

substitute B(7) in equation (9),
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T
’ : ' —o (G'(r)
—[%G(r)G"(r)—%(G'(r))l]w;=_l(u—u2)+(xv — pou) GZG @ 204
2 2 2
i -5 G® S G®
Then
.O-_zg;m.+l(ul —u)—(xv~pa'u)-—(2}"(i=0.
% CrTGZ(‘L') %G(r)

Multiply by —O‘;‘— G(1),

G"(1)+(x, —pc»"u)G’(r)-*-c'Tz(u2 -u)G(r)=0.

General solution is

(5 —pe)-f(r,—pai—a ) _ (=P (K, —pou)’ - ()
G(r)=Cie % +C,e 2

%lqr lrzr
=Ce?" +C;e?

where

h=(x,—pou)+H ,H= ‘/(ICV —pou) -’ (u’ —u)
n,=—(x, — pou)+H .
Note that 7; +7, =2H, rr,=-0"(u’ —u).
The boundary condition
GOf=3 e

, -1 1
G(0)=773C1+57}C2 =0.

We have C, =@ and C, = r‘G(O).
2H 24
Thus
’ 1 15G(0) e'é"'+ 1 1GQO) 3+
e INLQIN Shw i 2V/2H
2 2 - ir dis
2 _G(r) _G_[rz("(o)e 2 +’3G(0)ez ]
2 2 25 2H
Y 1 1
_ L[ nne® —gnet
T
¢ ne 2! +);e22

1 1
e Lne
1| =0 —uw)e * +0*(u* —u)e*

g = ir Lrzr
ne? +ne?
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Next, consider in equation (10).
€= %glcz(r) —x,C(t)—mu+ j (€ =), (v)dy .

Let

M'(7)
£ ’
—M(r
5 ()

C(r)=-

Similarly in B(7), we have

1 1 .
M(ry= EMO@) e gMO) o
2E 2F

where E=\’Kj—2€1F, F=—mu+ j(e"y—l)qﬁy(y)dy, G=Kx,+E, ¢, =—x,+E.

-0

Thus

A& S ) 2
C(r)=—2 4 2E : 2 2E .
O Z AN O LT
2\ \2E, 2E

1 sz(O)e-%q.r A& g M (0) e;’”’

’%‘11’ %qu
A 49.€ —4h9€

1 1
2 =391 292
& (qe’ +ge )

=L2(252F)|:i]

& qt+ge”
~Er
\/ F|: 1-¢ Er].
q,tq,e

A, =x,0,B(1)+x,0,C(1).

Consider in equation (8),

Integrating with respect to7 ,

A(r)= Kﬂvj B(s)ds + KIQJIC(S)ds

_ 26, j-G’(s) ds— 2x,0, j-M'(s) ”

T 2 G(s) & 2 M(s)
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2x.,0, . 2x0 "
=~—22InG(s) [y ~——22 I M () [},
o €
2,0, i G(r) 2x,0, In M(7)

ot G) & M(0)

1 1 1 1
_ 20, |nG@e ™" iGOet” | 20, | g:M(O0) 2 +q1M(0)e2‘“

o 2HG0)  2HG(0) & 2FM (0) 2EM (0)
o8 L 2 Ly
2% 0 e 2h 4re?’ | Rl e e
A(r)=— sz " In ne +ne | h,_z “In q,e +ge
e 2H £ 2F

The proof is now completed.

4. A Formula for European Option Pricing
Following Carr and Madan (1999) , the modified call price ¢, (k) is defined by

¢ (ky=e“C, (k) for some constant & >0
where C_(k)= je’rT(es —&")q,(s)ds is the value of a 7' maturity call option with strike price &*
¥

(k=InK), and ¢,(s) be the risk-neutral density of the log asset price 5, =InS,. As C,(k) is not

square integrable over (—o0,00), the introduction of a damping factor €“* aims at removing this problem.

Theorems 3.2 The Fourier transform of ¢, (k) exist:

©

vr()= [ e (kydk

—a

Proof
0= %[ e (e ~¢ )g, (s)dsdk

(a+l+1&)s (a+1+i&)s

=J‘:€"’4T(s)j;(e wiE g iy

_e" [y Atx=£—(a+1)) an
at+a—-E+iQa+D)E

where £ is the characteristic function defined in theorem 3.1

A sufficient condition for ¢, to be square-intefrable is given by ¥(0) being finite. This is equivalent to

E(SF") <.

266 -
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Call prices can then be numerically obtained by using the inverse transform:

@

[y & dé

-0

Z3
e

C (k)= 2_”

—ak @

=S [y @)ds (12)
/2

0

More precisely, the call price is determined by substituting (11) into (12) and performing the required

integration. Integration (12) is a direct Fourier transform and lends itself to an application of the FFT.
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