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ABSTRACT

This thesis presents the large deflection behavior of a cantilever beam subjected to follower
distributed load where material of the cantilever beam obeys the generalized Ludwick’s constitutive
law. The cross-section of the beam is prismatic and rectangular. The follower distributed load is
applied in transverse direction and it always keeps the right angle to the beam axis.

The stress-strain relationship of such materials is presented by generalized Ludwick’s
constitutive law. To derive the set of governing differential equations, equilibrium equations,
moment-curvature relation obeying the generalized Ludwick’s material model and nonlinear
geometric relations have been considered. A set of highly nonlinear simultaneous first-order
differential equations with boundary conditions is established. The shooting method is employed to
solve the problem. Furthermore, two cases of parametric studies are considered. One is N and &,
are independent and the other is  and & can be related to each other.

From the results, there are many interesting features associated with the nonlinearly
material properties of large deflections of cantilever beam subjected to follower distributed load. It is
worth noting that follower distributed load W increases as the rotational angle (90 increases and the
stable equilibrium paths can be observed. Last but not least, the numerical results are compared with
previous studies (linear material) in order to test the validity and accuracy of the present method, and

they are in good agreement.

Keywords: large deflection, cantilever beam, follower force, generalized Ludwick constitutive law,

shooting method.
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CHAPTER 1
INTRODUCTION

1.1 Background and Statement of the Problems

Nowadays, the analysis of large deflection of material nonlinearity for slender
structures is of importance in developments in mechanical engineering, aerospace
engineering, electronic engineering, robotics and manufacturing, etc. To deal with these
structures, the large deflection beam theory plays a vital role to carry out the problem. In
general, most of the structures show some degrees of nonlinearities such as geometric and
material nonlinearities. According to this practice, structural failures may occur when
these nonlinearities are neglected. Currently, these often happen as designers continue to
carry out the innovation of aircraft concepts that encourage to work hard on the existing
design components and industrial standards. Moreover, parametric studies [1], [2], [3],
and [4] present the influence of nonlinear geometric parameters and boundary conditions
in order to distinguish features that make it crucial.

Cantilevers are mostly found in construction that used for overhanging
structural elements, particularly in cantilever bridges, tower crane, cantilever retaining
walls, and balconies, etc. It is also chosen to design the joined wing of aircrafts.

Furthermore, cantilever beam can be applied to a variety of applications, such
as aircraft wings, helicopter blades, Microelectromechanical systems (MEMS), and high-
rise building. There are two types of loading that may encounter to any system. One is
the conservative load (e.g., load due to gravity) where the direction of the load is
independent to the path of loading. The other one is the non-conservative load (e.g.,
friction force, follower force) where the direction of the load depends on the path of the
loading. The definition of the follower loads are load paths which rotated with the
deformation curve in the analysis of geometric nonlinearity. Some special structures may
be loaded by follower force (e.g., air pressure under the aircraft wings, friction force)
where its direction depends on path of deflection. Therefore, to fully anticipate the
behaviors of a slender structure made of special material (generalized Ludwick's material)
under the follower force, one needs to regard the influence of geometric and material
nonlinearities inherent in the system.

Moreover, the follower load acting on the cantilever beam can be applied to
Micro-electro-mechanical systems (MEMS). For example, MEMS cantilever switch
consisting of overhanging beams over a ground electrode [5]. When applying a control
voltage between the top pole and the ground plane, cantilever beam is distorted made by
electrostatic force. As the beam deforms, the charge redistributes along the conductor’s


http://www.innovateus.net/innopedia/what-arch-bridge

surface (Fig. 1.7). To further illustrate this point, some joint wings of the aircraft and the
MEMS accelerometer related to this research are presented.

As a consequence of this issue, researching on large deflection of the cantilever
beam with nonlinearities materials becomes of importance. Otherwise, in this research
topic is to apply the shooting method incorporated with the seventh-order Runge—Kutta
method to solve the governing equations of the nonlinear problems. To investigate the
large deflection behavior of the presented problem, the set of governing differential
equations can be obtained from the equilibrium equations, moment—curvature relation
obeying the generalized Ludwick’s constitutive law and nonlinear geometric relations.
The following figures are explained some applications of cantilever beam.

Figure 1.1 Basic box wing configuration

Figure 1.2 Diamond box wing configuration
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Figure 1.3 Joined wing configuration

Cantilever
Counterweight
‘ +——Load
Tower and Crane
Base Support
/
XXX 7 XXXN

Figure 1.4 Crane configuration
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Cantilever 1 Cantilever 2

T

Pier 1 Pier 2

Figure 1.5 Cantilever Bridge configuration

\

Cantilever as Corbel

«—— Column

/

Figure 1.6 Corbel configuration
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Movable Top Electrode

Fixed Ground Electrode

(b)
Figure 1.7 MEMS cantilever switch, (a) Image courtesy Advanced Diamond

Technologies (b) Modeled geometry (www.thindiamond.com)
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1.2 Objectives

1.2.1 Investigate large deflection behavior of a cantilever beam subjected to
follower distributed load made from nonlinearly materials obeying generalized
Ludwick’s constitutive law.

1.2.2 Study the effect of nonlinearity materials on large deflection behavior of
the beam obeying generalized Ludwick’s constitutive law.

1.3 Hypothesis

The basic assumptions made in the formulation of the present problem studied
are as follows:

1.3.1 Material of the beam is made of incompressible, homogeneous, isotropic
obeying the generalized Ludwick’s constitutive law.

1.3.2 Bernoulli hypothesis is adapted to this study.

1.3.3 Shear deformation is negligible because the beam is considered as a
slender member.

1.4 Scope of Study
1.4.1 Cross-section of the beam is rectangular cross-section.

1.4.2 Material properties obey generalized Ludwick’s constitutive law.

1.4.3 Two cases of parametric study are considered. One is N and ¢, are

independent and the other is N and &, can be related to each other.
1.4.4 Only static behavior will be considered.

1.5 Conceptual Framework

This research is to analyze the large deflection behavior of a cantilever beam
obeying generalized Ludwick’s material model subjected to follower distributed load.
The governing equations are derived by considering the geometrical and material
nonlinearities. A set of highly nonlinear simultaneous first-order differential equations
with boundary conditions is set up and numerically solved by using the shooting method
incorporated with integration technique employing the seventh-order Runge—Kutta with
adaptive step size scheme.
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According to the previous mention, the framework of this study can be raised
as the followings:

1.5.1 Literatures review.
1.5.2. Mathematical model.
1.5.3 Program codes.

1.5.4 Analyze the results.

1.5.5 Conclusions.

1.6 Contribution to Knowledge

The large deflection behavior of a cantilever beam obeying generalized
Ludwick’s constitutive law subjected to follower distributed load can be applied to a
variety of applications. For example, aerospace structures, especially, joined-wing
aircraft is an interesting topic to many researchers. According to related works, several of
them [6], [7], [8], [9], and [10] described the large deflection of a cantilever beam of
linear and nonlinear materials subjected to conservative load. While, there is a limited
amount of research conducting the cantilever beam subjected to follower distributed load
where the material property can be described by the generalized Ludwick’s constitutive
law. Depending on the lack of research on the problem of generalized Ludwick material
under the follower distributed load. Therefore, this research could be a benchmark for the
other investigations.

The large deflection of the cantilever beam made from the generalized
Ludwick’s material under the follower distributed load is studied. Moreover, the
mathematical model illustrated the method for carrying out the problem concerning the
material and geometric nonlinearities. The stress—strain relationship played an important
role to solve the problem of nonlinearly materials such as Polymer, Alloy, Acetal plastic,
and Glass fiber [11]. Hence in this research, the study in effects of material nonlinearity
becomes more important and interesting research topic. Some contributions are listed as
the following.

1.6.1 Realize the behavior of a cantilever beam subjected to follower distributed
load made from nonlinearly materials obeying generalized Ludwick’s constitutive law.

1.6.2 Know about the effects of the material nonlinearity (n and &,) which
influence on the behavior of the cantilever beam.

1.6.3 Benchmark for the other investigators.
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CHAPTER 2
REVIEW OF THE LITERATURE

2.1 General

Slender structural elements, such as beams and columns, usually found in the
parts of the structures. These elements may have a deformation with large deflections but
small strains. That is why the analysis of geometrical nonlinearities must be established
to carry out the problem in this research study. The analysis of geometrical and material
nonlinearities thus often goes with some engineering applications such as marine
risers/pipes, marine cables, car tires, and aerospace structures, etc.

In order to solve the large deflection problem, the Elastica theory is generally
utilized. The Elastica is the equilibrium shape (large displacement) based on Euler’s
theory. Thus in this research the Euler-Bernoulli beam theory is selected to deal with the
problem of large deflection of a cantilever beam.

In the Euler-Bernoulli beam theory that is presented here, the exact curvature
relation can be expressed by

d’y
2

" Lol

1
K=—
P

When the slope 3_y Is considered to be small, the curvature expression becomes
N
2
INZNG 2.2)
dx p El

Hence the equation (2.2) can be applied to analyze the deflection of the beam-
column in the case of the small deflection. However, this theory is supposed to give good
results for small deflections of a beam.

In some cases, large deflections can be occurred when the material properties
are in elastic material. In this case, the equation (2.2) cannot be employed to solve the
large deflection problem. To analyze large deflection, the exact curvature relation
appeared in equation (2.1) is chosen to handle the problem. Moreover, to deal with the
nonlinear differential equations, some methods are introduced to solve the problem such


http://en.wikipedia.org/wiki/Beam_%28structure%29

as the elliptic integrals method, and the shooting method incorporated with Runge-Kutta,
etc.

As revealed in equation (2.1), it can be seen that% =tany. In case of y <1
X

(small deflection), then we can get tan y = . After making a comparison between large

and small deflection with the relationship between »* and (tan y)2 , the following graph

(Fig. 2.1) is chosen to describe in order to give the information when the large deflection
equation should be utilized. Furthermore, it can be concluded that when the differences

between »* and (tan ;/)2 is larger than 1%, the large deflection behavior is initially

presented.
1.2+ ,
2 2
7y .(tany) /
(rad) 1.0 (tan;/]‘
0.8 ,\
Small Deflection :/_1
0.6+
| Large Deflection /
+—F—>»
0.4 4 [
[
: 1% difference
0.24 |
[
| -
00 01-:;*: ' ' ! ' ' '
Jlara
0.0 7 45deg) 02 0.4 0.6 0.8 10 12

¢ (rad)

Figure 2.1 Relationships between »* and (tan 7/)2

Nowadays nonlinear elastic materials are applied to many nonlinear analysis of
structural elements such as Ludwick’s material, generalized Ludwick’s material, etc.
Furthermore, the purpose of this research is to study the effects of the degree of material
nonlinearity parameters g, andnon the large deflection behavior of a cantilever beam
obeying generalized Ludwick’s material model subjected to a follower distributed load.
The Euler-Bernoulli beam theory and the inner bending moment—curvature relationship
are employed to acquire the governing equations. The shooting method and seventh order
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Runge—Kutta method are employed to get the numerical solution of the large deflection
problem of a cantilever beam.

Generally, most of the structures in civil engineering are behaved in linear
elastic behavior due to the serviceability purpose. Aside from these, nonlinear elastic
behavior always occurs in slender structures, especially found in aerospace applications
(e.g., joint-wing of the aircraft affected by wind propulsion like cantilever beams). The
modeling and the computational process are complicated. Thus the analysis of
geometrical nonlinearities must be utilized to deal with the problem. The shooting method
incorporated with Runge-Kutta are also proposed to solve nonlinear elastic behavior.

2.2 Related Research

There are many contributions related to the analysis of material nonlinearities
of structural elements. Furthermore, the main purposes in the previous research studies
perceive only the geometrical nonlinearities. In the last few decades, the problem of large
deflection of a cantilever beam obeying generalized Ludwick’s material model subjected
to a follower distributed load has not been investigated by many researchers. Most
contributions related to the problem are revealed as below.

2.2.1 Linear Material

Rao and Roa [12] studied large-deflection of a cantilever beam subjected
to a rotational distributed loading. The model formulation is formulated by nonlinear
differential equation of the second order. Meanwhile, the large deflection problem of
cantilever beam subjected to a follower force and direct method for analysis of the flexible
cantilever beams subjected to a follower forces, respectively, were considered by
Shvartsman [13] and [14]. However, Kocaturk et al. [6] investigated the large deflection
static analysis of a cantilever beam subjected to a point load. The method of nonlinear
finite element is introduced. Phungpaingam et al. [15] investigated the post-buckling of
beam subjected to follower. The elastica theory and the shooting method are applied to
carry out the numerical results. Furthermore, the shooting method is set up to solve the
problem of the large deflection of a cantilever beam with geometric nonlinearity [16].
While, Chen [17] proposed an integral approach for large deflection cantilever beams.
The moment integral treatment are formulated to get the numerical solution. Otherwise,
large deflections of a cantilever beam under an inclined end load studied by Mutyalarao
etal [7]. Nallathambi et al. [18] described large deflection of constant curvature cantilever
beam under follower load. The fourth order Runge—Kutta method and shooting method
are proposed to get the numerical solution. And another is Kang and Li [19] established
large and small deformation theories to solve the problem of the bending of functionally
graded cantilever beam with power-law nonlinearity subjected to an end force. The
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problem of application of the differential transformation method and variational iteration
method to large deformation of cantilever beams under point load were considered by
Salehi et al. [20]. The differential transformation method (DTM) and the variational
iteration method (VIM) are proposed to get the results. However, Lu Li and Rong Li [21]
focused on studying nonlinear bending of a cantilever beam subjected to a tip
concentrated follower force. The theory of geometric material nonlinearities is applied to
formulate the governing equations accompanies the shooting method to get the numerical
results. One more thing is the model study and active control of a rotating flexible
cantilever beam was dealt by Cai, G.P. et al. [22]. The finite element discretization
method and Hamilton theory are proposed to carry out the numerical results. Moreover,
Xiang et al. [23] researched on nonlinear analysis of a cantilever elastic beam under non-
conservative distributed load. The numerical results are solved by using the shooting
method. Taking a look at this problem, Kim, J.O. et al. [24] employed finite element
method to deal with beam stability on an elastic foundation subjected to distributed
follower force.

Vazquez-Leal, et al. [25] examined the approximations for large
deflection of a cantilever beam under a terminal follower force and nonlinear pendulum.
The homotopy perturbation method and Laplace-Pad e post treatment are established to
solve the problems. Otherwise, the effect of subtangential parameter on the stability and
dynamic of a cantilever tapered beams subjected to follower forces was researched by
Auciello [26]. The variational approach with orthogonal polynomials is established to
deal with the problem of the stability and dynamic of a cantilever tapered beams.

Another application of the cantilever beam problem can be proposed to
Micro-electro-mechanical systems (MEMS). Presently, cantilever beam MEMS are very
popular to many researchers to analyze and design new materials or structures to meet the
requirement of the micro devices [27]. Otherwise, cantilever beam MEMS can be found
in MEMS switch [28], atomic force microscopes [29], electronic filters [30], MEMS
resonator [31], and data storage devices [32].

Last but not least, the following related researches are illustrated the nonlinear
elastic Ludwick material.

2.2.2 Non-linear Elastic Ludwick Material

Determining large deflections for combined load cases made of Ludwick
material by means of different arc length assumptions was investigated by Eren [33]. For
mathematical formulation, materials of geometric nonlinearities are mentioned. The
theory of Euler—Bernoulli is established to compute the horizontal and vertical
deflections. Furthermore, Brojan et al. [8] analyzed non-prismatic nonlinearly elastic
cantilever beams subjected to an end moment. The material is made of the Ludwick
constitutive law. Moreover, Athisakul et al. [34] applied the shooting method to carry out
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the numerical results with the problem of the effect of material nonlinearity on large
deflection of variable-arc-length beams subjected to uniform self-weight.

One more interesting work is that Lee [9] investigated large deflection of
cantilever beams of nonlinear elastic material under a combined loading. The shearing
force formulation is set up to formulate the governing equation to solve the problem.
Butcher’s fifth order Runge—Kutta method is employed to compute the numerical results.
Narmluk et al. [35] also observed the large deflections of cantilever beams made of non-
linear elastic material under a follower tip loading obeying Ludwick’s constitutive law.
The shooting method and Runge-Kutta-Felhberg integration technique are proposed to
carry out the problem. Last but not least, the problem of Semi-exact solutions for large
deflections of cantilever beams of non-linear elastic behavior was investigated by Solano-
Carrillo [11].

Borboni and Santis [10] dealt with the problem of large deflection of a
non-linear, elastic, asymmetric Ludwick cantilever beam subjected to horizontal force,
vertical force and bending torque at the free end. The Euler—Bernoulli beam theory was
created to solve the problem. Otherwise, large deflections of cantilever column made
from Ludwick’s material model under tension from guyed cable was proposed by Phonok
[36]. The moment-curvature expression is formulated to establish the governing
equations to dealt with the problem. The shooting method and Runge-Kutta integration
technique are applied to get the numerical results. And, the non-linear material used in
this research study n=0.5, 1.0, 2.0 and 3.0.

2.2.3 Non-linear Elastic Generalized Ludwick Material

Brojan et al. [1] dealt with the large deflections of non-linearly elastic
non-prismatic cantilever beams made from materials obeying the generalized Ludwick
constitutive law. In the model formulation, the moment-curvature formula was set up to
get the the governing equations and the boundary conditions in order to solve the problem.
The similar problems of generalized Ludwick constitutive law are post-buckling of
linearly tapered column and simply supported column made of nonlinear elastic materials
obeying the generalized Ludwick constitutive law were studied by Saetiew and
Chucheepsakul [2] and [3], respectively. The geometrical material nonlinearities are
employed to formulate the governing equations. The shooting method is selected to carry
out the numerical results. Last but not least, Brojan et al. [37] illustrated on static stability
of nonlinearly elastic Euler’s columns obeying the modified Ludwick’s law. Four system
states in static equilibrium are perceived as neutral, unstable, locally stable, and globally
stable state.

As described literatures above, it was remarkable that research studies on
the behavior of the large deflection problems that are made of material nonlinearities have
carry out mostly the cantilever beams and columns. Only the small amount of research
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studies handled the problem with a slender, follower distributed load cantilever beam.
Brojan et al. [4] considered the large deflections of non-prismatic nonlinearly elastic
cantilever beams subjected to non-uniform continuous load and a concentrated load at the
free end obeying generalized Ludwick’s constitutive law.

Nonetheless, up to this time the large-deflection of a cantilever beam obeying
generalized Ludwick’s material model subjected to a follower distributed load has not
been yet clarified elsewhere.

By perceiving the effects of geometrical and material nonlinearities, the
governing equations obtained for the large deflection behavior are highly nonlinear.
Generally, the closed-form solutions cannot be employed in this situation. The shooting
method is then required and played a vital role to obtain numerical solutions.
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CHAPTER 3
MATHEMATICAL MODEL

3.1 Assumption of the Analysis

This research is to analyze the large deflection behavior of a cantilever beam
obeying generalized Ludwick’s material model subjected to follower distributed load.
The geometrical and material nonlinearities are employed to get the governing equations.
Moreover, a set of highly nonlinear first-order differential equations with boundary
conditions is set up and carried out numerically by using the shooting method
incorporated with integration technique employing the seventh-order Runge—Kutta with
adaptive step size control, as already mentioned in conceptual framework in chapter 1.

3.2 Model Description

Displayed in Fig. 3.1, OB is the length of cantilever beam subjected to a follower
distributed load (w) with the undeformed configuration. Under loading, the beam
undergoes large deflection and the deformed shape of the cantilever beam is presented by
OA (Fig. 3.2). After deflection, the direction of the distributed load remains perpendicular
to the axis of the beam. Moreover, in the research study, the intrinsic coordinate systems
aresand @ . Itis also required to carry out the tip angle « , the deflections at the tip of the
cantilever beam X .Y, , and the deformed configuration for follower distributed load.

W(s)

NDEFORMED CONFIGURATION

—

Figure 3.1 A cantilever beam subjected to the follower distributed load

with undeformed configuration



-
NDEFORMED CONFIGURATION

- L

B

0]

DEFORMED CONFIGURATION

Xo A X
AT LOCATION A |, 5=0
AT LOCATION O, s=L

Figure 3.2 A cantilever beam subjected to the follower distributed load

with deformed configuration

3.3 Stress-strain Relationships

The equilibrium of moment, geometric relationships, and constitutive relation-
ships are employed to get the mathematical formulation. A set of strongly nonlinear
differential equations is acquired to illustrate the deformed shape of the cantilever beam
subjected to a follower distributed load, as shown in Fig. 3.2. The solution procedures are
also behaved in this section.

3.3.1 Constitutive relationships

The generalizations of the Hooke’s law named Ludwick-type nonlinear
elastic constitutive formula is chosen to describe the nonlinear elastic behavior. Its
nonlinear stress—strain relationship can be written as shown below.

1/n

E|g| 120,

~Elé]

o (3.1)

1/n
1 €<0.

where o normal stress
& normal strain (for tensile £ >0and compressive ¢ <0 domain)
E material constant

n dimensionless parameter indicating the degree of material
nonlinearity
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The nonlinear elastic material is “soft” for n <1, i.e., decreasing modulus
of the material do/de. Otherwise, nonlinear elastic material is “hard” forn>1, i.e.,

increasing modulus of the material do/de. Obviously, the case of linear elastic
(Hookean) material correspondsto n=1.

However, Ludwick’s model (nonlinear) which is a generalization of the
Hooke’s model embraces a description of elastic behavior of a wider range of materials
but is not so mathematically compliant. Besides that, it has a major deficiency. Namely,
the stress gradient is infinite (or zero) for sufficiently small strains, Fig. 3.3. Since it is
impossible to demonstrate the actual material behaviors, Jung and Kang [38] suggested a
generalized form of the Ludwick constitutive law, mathematically described by the
following expression,

1/n
El(lel+ e - £>0,
o {(|‘9| ‘90) - o } 3 (3.2)
—E{(|g|+go) —&"} ; £<0.

in which an additional parameter g, is supplemented to prevent those shortcomings.

Three parameters E,nand &, are employed to develop the generalized

Ludwick’s constitutive law and applied to carry out the stress-strain curves acquired by
the previous experiments. As a result of Eq. (3.2), setting ¢, =0 leads to Ludwick-type

material; therefore, the Hooke’s law is acquired by setting n=1.

o 167

1.4+

1.2

1.0+

0.8+

0.6

0.4
Hooke's law

_____ Ludwick’s law

—_—— Generalized Ludwick’s law

0.0 0.2 0.4 06 0.8 1.0 1.2 1.4 1.6
&

Figure 3.3 Stress—strain relationships in tensile domain
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Figure 3.4 Free-body diagram of an infinitesimal element of the beam

dx

K

dy
ds

Figure 3.5 Geometric relationship of beam element

The inner bending moment of a beam can be revealed with normal stress
o at any cross-section as shown in Fig. 3.6.

M = —j oydA. (3.3)
A
y A y A

O.x _E {(‘E‘ ) 89 )1-"?1 A Eén} y 4
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?/ \M éTy
<

o )M - og
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Figure 3.6 Stress distribution of generalized Ludwick’s type of the beam
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Figure 3.7 Positive and negative of bending moment and curvature relations

Where o is related to the corresponding strain in compression and
tension, see Eq. (3.2). Let dA=bdy be the infinitesimal cross-sectional area of the beam.
Furthermore, employing the expression of normal strain-curvature £ =—xy ; hence

M = [E[ (el +2,)" ~&3" | yan (34)

After some work, the inner bending moment-curvature utilizing material
nonlinearities of cantilever beam obeying the generalized Ludwick’s constitutive law can
be obtained as follows:

! _9n2
v — [zchﬂ:o] n zchzn(n +1)—-2n%¢,
2 k*(2n+1)(n+1)

2n+l

= 2n’g, "
x*(2n+1)(n+1)

1 h?

—&l — 3.5

5 (35)

Having done this, by setting ¢, =0into Eq. (3.5), the inner bending
moment—curvature relationship of Ludwick-type is acquired.

1

M =El (x)n, (3.62)

n+1

where | =(%) " (2 n th(z"“). (3.6b)
n+
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Otherwise, by specifying the value n =1 into Eq. (3.6), the inner bending
moment—curvature relationship of Hooke’s law is achieved.

M = Elx, 3.7)

3
in which 1, = b1—2 is the moment of inertia of the rectangular cross-sectional area.

The result by differentiating Eq. (3.5) once with respect to the arc length

s reveals:
(kb h ) ho ) h Ve
K n n n
™ b( ) )(n+1)(1(2+50j h_bngo(lc2+goj h_bn(lc2+goj h
ds x*(2n+1) x*(2n+1) k*(2n+1)
o _
b4n’e KD+8 ' anit
\"2 %) ban’g " |dk (38)
*(2n+1)(n+1)  «*(2n+1)(n+1) | ds’ '
dM dx
LY .
i ™ ds (3.92)
where
I 1 1 i
(Khj(n+l)(lch+gojn h ngo(lch+gojn h n(zch+goj "
L _pll2 2 = 2 2
" k*(2n+1) k*(2n+1) k*(2n+1)
o Yn |
4n’g, (K+$0J ' , 2
2 ___4ng, . (3.9b)

T n+)(n+l) & (2n+1)(n+d)
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3.4 Governing Equations

The theory of elastica is applied to get a set of governing equations. Applying the
equilibrium equations, bending moment-curvature, and the geometric relations to the
infinitesimal element ds of the deformed beam Fig. 3.4 and 3.5, the set of differential
equations this can be obtained as:

%zcose,

ds

ﬂ =sind,

S

d—V:wcosé?,

ds

d—H =wsiné,

ds

dd—l\: =—(V cos@+Hsina).

By substituting Eq. (3.14) into Eq. (3.9), this can be achieved.

dx  —(Vcos@+Hsing)

ds

El

nx

do
S e

N

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

The following non-dimensional terms are demonstrated to improve the generality

in the computational process.

X
X =,
L
_oowl
W=—,
El,
— 1
=%

SN
y L’
2
v
El,
o=t
nk — L4’

I

=
L

p=L,
L

v - ML

K =xL,
Rl
L
2
A=A
El,

(3.17)

As mentioned earlier, by employing the non-dimensional terms above, Eq. (3.9)
can be derived in non-dimensional expression as:
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, (3.18)

where
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_h n
" e (K 2°%) (3.19%)
(2n+1)(n+1) & (2n+1)(n+1) |
h . h3
E,:bl'g . (3.19h)

Furthermore, the Egs. (3.10) — (3.14) can be expressed in the non-dimensional
forms as

dx

— =00S6, 3.20
ds (3.20)
@y

— =5sind, 3.21
ds (3.21)
d_Y =WCosH, (3.22)
OH S qeins; (3.23)
ds

d—l\_/lz—(\7c059+ Hsing). (3.24)
ds
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3.5 Boundary Conditions
The boundary conditions are as follows:
Ats=1

0=0,X#0,y=0,V #0,N 0.

Ats=0

NDEFORMED CONFIGURATION

B

DEFORMED CONFIGURATIO

— Xo A X
s=1
6=0 3

Figure 3.8 Boundary condition of cantilever beam subjected to follower

distributed load
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CHAPTER 4
RESEARCH METHODOLOGY

4.1 General

In this study, the process is to carry out the effects of the nonlinear materials
(n) of the cantilever beam which influence over the large deflections of the beam made
from generalized Ludwick’s constitutive law under the follower distributed load.
According to proposed model, the governing equations with suitable boundary conditions
are set up to deal with this problem. Moreover, the solutions of the problem are
numerically solved by using the shooting method incorporated with integration technique
employing the seventh-order Runge—Kutta with adaptive step size control. After
satisfying the boundary condition, the results can be obtained.

4.2 Method of Solution

Since a set of governing equations is a complicated nonlinear differential
equation, hence the behavior of the deflected cantilever beam problem is described by
numerical solutions.

By substituting Eq. (3.24) into Eqg. (3.18) and choosing Egs. (3.20) — (3.23) of
the geometric relationship and free-body diagram of an infinitesimal element of the beam,
a set of nonlinear differential equations is achieved:

4 %, (4.1a)
ds

di ) AN

—_:—(V cos¢9+Hsm6?)_—, (4.1b)
ds I

d—\_/ =WCO0S 4, (4.1c)
ds

H _ asine, (4.1d)
ds

d—f =C0S 4, (4.1e)
ds

dy

—=siné. 4.1
ds (410



The boundary conditions of the problem are as follows:

0(5=0)=6, and 6O =1)=0, (4.2a)
K(5=0)=0 and &(5=1)=0, (4.2b)
X(5=0)=0 and X(5=1)=X(), (4.2¢)
y(5=0)=0 and ¥(5=1)=y(). (4.2d)

Two-point boundary value problem of material nonlinearity can be acquired by
employing Eqg. (4.1) with boundary condition Eqg. (4.2), which can be carried out by the
shooting method. For a given value of &,, there is an unknown variable (W) needs to be

computed. The solution steps are listed as follows:

(1) Assign the dimension of the cross-section in term of non-dimensional
parameters (b and h ), and the material constants (nand &,) to the problem.

(2) Given the value of g, and estimate W for the first iteration.

(3) Integrate Egs. (4.1a) — (4.1f) from S =0to S =1 by employing the seventh-
order Runge—Kutta method.

(4) Minimize the objective function @ as

Minimize @ =|6(1)|. (4.3)
W

In the computational process, the value of @ is required to be less than the
tolerance (107") for the numerical solutions using the Newton-Raphson iterative scheme.

In the differential equations of material nonlinearity (3.18) and (4.1a)—(4.1b), it
Is important to realize that singularity can be occurred when setting x =0 at the free end.

To prevent this shortcoming, we set i(0) =1x10~ instead of zero.

Last but not least, the flow charts for the computational procedures are
illustrated in Fig. 4.1 and 4.2 as below.
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Specify the degree of material nonlinearity (»)

{iﬂi

Apply the degree of material nonlinearity (s,)

:rl Input the end rotation (4,) ':
| Approximate distributed load (i) '
| Input the limitation and the increment i

ﬁ/latlab program starts solving by using shooting
method and 7" order Runge—Kutta mgthod.

d—K=—(I700$9+17sin9)£—°, ﬁzf, ‘
s &

) N =l

ds ds

dx

=cos0, @ =sind,

)

= Y J

Estimate
w again

Figure 4.1 Flow chart of computational procedures by using Matlab program 1
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n

The second flow chart is applied &, =(2n)rn and &, = (EJH for n>1 and

n <1, respectively (Chapter 5, Case 2).

e

Apply the degree of material nonlinearity (»)

:r Input the end rotation (4,) ||

| Approximate distributed load (i) '
| Specify the limitation and the increment '

ﬁ/latlab program starts solving by using shooting
method and 7™ order Runge—Kutta method. |
1, do

{

d—K:—(Vcose+§sin9)_—°, — =K,
ds Ly ds
d_V_—_ wcos @, d—H: wsin @,

ds ds

=cos 0, @ =siné@,

= /

/
| &

—{ Enp

Estimate
w again

Figure 4.2 Flow chart of computational procedures by using Matlab program 2
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CHAPTER 5
RESULTS AND DISCUSSION

This research was analyzed the large deflection behavior of a cantilever beam
obeying generalized Ludwick’s material model subjected to follower distributed load. In
order to deal with the solutions of the problem, the shooting method incorporated with
integration technique employing the seventh-order Runge—Kutta is established to get the
numerical results comparing with the previous research study [1] investigated the large-
deflection behavior of a cantilever beam subjected to a rotational distributed loading
which is formulated by means of a second order nonlinear-differential equation.

Having compared the results with Rao and Rao [1], in this research was founded
that the values of the rotation angle 6, and the follower distributed load W are very close
to those of Rao and Rao [1] while usingn =1. It is also shown in Table 5.1.

Table 5.1 Comparison results between Rao and Rao [1] and the presented study

o, W

deg rad Rao and Rao [1] This research

(n=1¢,=0)
9.54 0.1665 1.0 0.99980
19.04 0.3323 2.0 1.99978
37.75 0.6589 4.0 400016
55.83 0.9744 6.0 6.00041
73.02 1.2744 8.0 7.99981
89.15 1.5560 10.0 9.99972
104.12 1.8172 12.0 11.99933
130.43 2.2764 16.0 16.00006
152.09 2.6545 20.0 19.99959
169.68 2.9615 24.0 24.00033
183.86 3.2090 28.0 28.00096

195.27 3.4081 32.0 32.00189




5.1 Numerical Solutions

In order to study the important parameters, the set of parameters &,andn is
divided into two cases. The first case is nand g, are varied independently. Second one is
nand &, are related to each other.

To analyze the numerical computations of the large deflections of cantilever

beam obeying generalized Ludwick’s material model subjected to follower distributed
load, the cross-sectional dimensions and length of the cantilever beam are given by the

non-dimensional geometric parameters as follows: b =0.2mand h =0.2m.

5.1.1 Case 1: nand &, are varied independently

To point out the nonlinear constitutive relationships clearly and simply
we have chosen the following numerical examples, the rectangular cross-section of
cantilever beam is subjected to several different follower distributed loads with the degree
of material nonlinearity (n) .

Example 1

The case of the cantilever beam with non-dimensional geometric parameters
b=0.2m and h=0.2m was analyzed first. The nonlinear material parameters that
determine are: &, =0.001 and nvarying from0.50,0.75..2.00 . The results listed in Table
5.2 as shown below.

The result listed in Table 5.2 can be interpreted that when using n varying from
0.50,0.75..2.00 with nonlinear elastic material &, =0.001 , it is worth noting that the

rotation angle &, and the follower distributed load Ware both increase their values.
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Table 5.2 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.001 and nvarying from 0.50,0.75..2.00

W

% ¢, =0.001

(rad)
n=050 n=0.75 n=1.00 n=1.50 n=175 n=2.00

0.0 0.000000 0.000000 0.000000 0.000000 0.000000  0.000000
0.2 0.027090 0.351219 1.201348 3.759995 5.044654  6.189575
0.4 0.102706 0.866293  2.410405 5.988260  7.890623  9.176920
0.6 0.243115 1.482040 3.635229 8.003270 10.210257 10.997713
0.8 0.404222 2.181617 4.884284 10.206757 12.268636 13.890772
1.0 0.634518 2959364 6.166776 12.023368 14.179759 15.832106
12 0922219 3.815147  7.492988 13.791720 16.009048 17.667471
1.4 1271882 4.752561  8.874687 15.548056 17.802350 19.449509
1.6 1689311 5.778368 10.251237 17.323316 19.596736 21.219658
1.8 1.181814 6.902510 11.782054 19.147406 21.333519 23.015005
20 2758578 8.138523 13.505596 21.052366 23.309333 24.873164
2.2 3431161 9.504355 15.280566 23.075574 25.338780 26.836744
24 4214203 11.023700 17.220641 25.263929 27.512862 28.736959
2.6 5126425 12.728098 19.353487 27.680240 29.824193 31.311607
2.8 6.192100 14.660274 21.790026 30.414219 32.652169 34.001484
3.0 7.443273 16.879618 24.568469 33.429724 35.873586 37.200813
3.14 8.452045 18.648363 26.795681 36.224135 38.556951 39.901154
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The relationship of the load-displacement curve for the nonlinearly cantilever
beam between the follower distributed load W and the rotation angle &, are exhibited
with the figure below.

W 40
30
20

101

Figure 5.1 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.001

As illustrated in Fig. 5.1, the load—displacement curves of the cantilever beam
with various material nonlinearity parameters n are plotted. The behaviors of the

cantilever beam for three cases (n=1,n<1, and n>1) with &, =0.001 are described
by using the load—displacement curves (Fig. 5.1).

It should be noted that a linear case n=1 (Fig. 5.1), the well-known load-
displacement curve is monotonic and stable. As it can be seen from the Fig. 5.1, the

follower distributed load W increases as the rotation angle 6, increases.

Furthermore, it is remarkable to note that the case of hardening material, where
n>1 and n<1 (Fig. 5.1), the follower distributed load W and the rotation angle &, both
increase in their values.
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In addition, the equilibrium configurations for 6, =12 and 6,=2.0 are
selected to indicate in the Fig. 5.2.

Figure 5.2 Equilibrium configurations for €, =1.2 and 6, =2.0

Moreover, the nonlinearity material parameters N=0.50, n=1,andn=1.30
are selected to show the deflection configuration in the Fig. 5.3, 5.4, and 5.5,
respectively.

0.0 1

0.2

044

-0.6-

-0.8

-0.4 0.2 0.0 0.2 0.4 06 0.8 1.0 12

Figure 5.3 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50
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Figure 5.4 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1

0.0 1

-0.24

0.4

-0.6

-0.8

_1 0 T T T T T T T T
0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

Figure 5.5 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Finally, their deflection configuration results for n=0.50, n=1.00, and
n=1.30 are displayed in Table 5.3, 5.4, and 5.5, respectively.
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Table 5.3 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and ¢, =0.001
Configuration

6, (rad) W
1 0.2 2.758578
2 0.4 0.102706
3 0.8 0.404222
4 1.2 0.922219
5 1.6 1.689311
6 2.0 2.758578
7 2.4 4.214203
8 2.8 6.192100
9 3.14 8.452045

Table 5.4 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1

n=1andg, =0.001
Configuration

6, (rad) W
1 0.2 1.201348
2 0.4 2.410405
3 0.8 4.884284
4 1.2 7.492988
5 1.6 10.251237
6 2.0 13.505596
7 2.4 17.220641
8 2.8 21.790026
9 3.14 26.795681
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Table 5.5 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and¢, =0.001
Configuration

6, (rad) W
1 0.2 2.686490
2 0.4 4.699971
3 0.8 8.234361
4 1.2 11.561950
5 1.6 14.937766
6 2.0 18.566319
7 2.4 22.700362
8 2.8 27.750629
9 3.14 33.369313

As displayed in the figures (5.3, 5.4, and 5.5) and the tables (5.3, 5.4, and 5.5),
the deflected shapes with the same slope angle are mostly identical whether the
nonlinearity material parameters are selected with different values (n=0.50,n=1, and
n=1.30). Otherwise, it is very interesting to take a note that the follower distributed load

W successively increases while the rotation angle @, increases. But, it is remarkable to

note for n=0.50 that the follower distributed load W slowly increases near the value of
6,=08.

50



example except &, =0.002. The results listed in Table 5.6 as shown below.

Example 2

As the second example, all the parameters are kept the same as in the first

Table 5.6 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.002 and n varying from 0.50,0.75..2.00

W
% 5, =0.002
(rad)
n=050 n=075 n=100 n=150 n=175 n=200
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.030000 0.365840 1.390990 3.576958 4.711202 5.533119
0.4 0.108740 0.887916 2.410405 5.986771 7.319147 8.778117
0.6 0.237053 1.509028 3.635229  8.061968 9.661614 11.208064
0.8 0.416733 2.213030 4884284 9.965219 11.859777 13.319680
1.0 0.650400 2.994707 6.166776 11.773619 13.536827 15.250057
1.2 0.941586 3.854122 7.425458 13.533411 15.584611 17.076075
1.4 1.294879 4.745821 8.874605 15.283949 17.370118 18.849674
1.6 1.716114 5.770527 10.320950 17.018005 19.156962 20.611602
1.8 2.212642 6.951755 11.862522 18.302868 20.978948 22.398432
2.0 2.793697 8.193478 13.505596 20.484577 22.871141 24.247270
2.2 3.470901 9.455371 15.276513 22.388193 24.873694 26.200093
2.4 4258971 11.084094 17.118820 24.853231 27.027814 28.309105
2.6 5.176734  12.792874 19.370085 27.248978 29.427385 30.644986
2.8 6.248600 14.730014 21.790026 29.172339 32.143407 33.024377
3.0 7.506806  16.955204 2456884 33.265730 35.338013 36.624828
3.14 8.521145  18.728773 26.79442 35.868720 37.822884 38.729547
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The relationship of the load-displacement curve (&, =0.002) for the nonlinearly

cantilever beam between the follower distributed load W and the rotation angle &, are
demonstrated with the figure below.

W 351
30
25
20

15 1

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

6

0
Figure 5.6 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.002

As displayed in Fig. 5.6, the behaviors of the cantilever beam for the nonlinearly
parametersn =0.50,n=1.00, and n=1.30 with & =0.002 are described by employing
the load—displacement curves (Fig. 5.6).

It is worth noting that a linear case n=1 (Fig. 5.6), the well-known load-
displacement curve remains monotonic and stable comparing to &, =0.001. As it can be
viewed from the Fig. 5.1, the follower distributed load W increases as the rotation angle
6, increases.
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The equilibrium configurations ( & =0.002) for 6,=1.2 and 6,=2.0 are

selected to indicate in the Fig. 5.7.

Figure 5.7 Equilibrium configurations for 6, =1.2 and 6, =2.0

Furthermore, the nonlinearity material parameters n=0.50, n=1.00, and
n=1.30are selected to show the deflection configuration in the Fig. 5.8, 5.9, and 5.10,

respectively.

0.0+

-0.2

044 6,=3.14

0
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-0.81

-1.0

1.2

Figure 5.8 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50
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Figure 5.9 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00

Figure 5.10 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30
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Table 5.7 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

Configuration

n=0.50and ¢, =0.002

6, (rad) W
1 0.2 0.030000
2 0.4 0.108740
3 0.8 0.416733
4 1.2 0.941586
5 1.6 1.716114
6 2.0 2.793697
7 2.4 4.258971
8 2.8 6.248600
9 3.14 8.521145

Table 5.8 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

Configuration

n=1.00and &, =0.002

6, (rad) W

1 0.2 1.39099

2 04 2.410405
3 0.8 4.884284
4 1.2 7.425458
5 1.6 10.32095
6 2.0 13.505596
7 2.4 17.11882
8 2.8 21.790026
9 3.14 26.794424
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Table 5.9 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and¢, =0.002
Configuration

6, (rad) W
1 0.2 2.389235
2 04 4.592765
3 0.8 8.110615
4 12 11.118085
5 1.6 14.483269
6 2.0 18.415690
7 2.4 22.421698
8 2.8 27.576021
9 3.14 33.174583

As described in the first example with the nonlinear elastic materials &, =0.001

, the deflected shapes with the same slope angle in the Fig. 5.8, 5.9, and 5.10 are
indistinguishable whether the nonlinearity material parameters are chosen with different
values (n=0.50,n=1, and n=1.30). It is remarkable for n=0.50 that the follower

distributed load W slowly increases near the value of &, =1.2 while others are increasing
successively.

Other numerical results for the large deflection of the cantilever beam made of
the generalized Ludwick constitutive law are demonstrated as below. The nonlinear

elastic materials ¢, = 0.003 to &, =0.01 with the degree of material nonlinearity nvarying
from 0.50,0.75..2.00 will be chosen to show as the following examples.
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example except €, =0.003. The results listed in Table 5.10 as shown below.

Example 3

As the third example, all the parameters are kept the same as in the first

Table 5.10 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.003 and nvarying from 0.50,0.75..2.00

W
% &, =0.003
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.032822 0.378473 1201348  3.434369 2.733814 3.810573
0.4 0.114631 0.907267 2.293112  5.822651  7.244021 8.524970
0.6 0.246107 1.533365 3.635229  7.899699 9.525022 10.804016
0.8 0.429035 2.241628 4.884284  9.777679 11.557744 12.634702
1.0 0.666047 3.027102 6.166776 11.578463 13.357236 14.819578
1.2 0.960698 3.890036 7.492988 13.333459 15.456943 16.637830
14 1.317599 4.827818 8.874687 15.076714 16.425417 18.403662
1.6 1.742620 5.866771  10.325675 16.848416 18.887403 20.158158
1.8 2.243151 6.997624  11.862520 18.611931 20.571502 21.937452
2.0 2.828475 8.240526  13.505594 20.546486 22.205723 23.778223
2.2 3.510276 9.613594  15.280559 22.557089 24.321443 25.721938
24 4303349 11.140720 17.220642 24.729622 26.492582 27.820101
2.6 5.226624  12.853768 19.370085 27.093822 28.557592 30.142284
2.8 6.304648  14.795595 21.790026 28.627982 31.748275 32.728555
3.0 7.569849  17.026361 24.569119 32.992422 34.921503 35.756704
3.14 8589725 18.804523 26.795572 35.361549 37.555815 38.208978
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Shown in the figure below is the relationship of the load-displacement curve
(&, =0.003) for the nonlinearly cantilever beam between the follower distributed load W

and the rotation angle 6. As it can be seen from the Fig. 5.11, the follower distributed

load W increases as the rotation angle 6, increases.
W 35-

30+

254

20

15 4

104

Figure 5.11 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.003

The equilibrium configurations ( & =0.003) for €,=1.2 and 6,=2.0 are
chosen to demonstrate in the Fig. 5.12.

Figure 5.12 Equilibrium configurations for 8, =1.2 and 6, =2.0
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The nonlinearity material parameters n=0.50, n=1.00, and n=1.30 are
selected to show the deflection configuration in the Fig. 5.13, 5.14 and 5.15, respectively.

0.0

-0.2+

0.4+

064

-0.8 1

_1 .0 T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 06 0.8 1.0 1.2

Figure 5.13 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50

Figure 5.14 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00
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Figure 5.15 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

As shown in this example with nonlinear elastic materials g, =0.003, the

deflected shapes with the same slope angle in the Fig. 5.13, 5.14, and 5.15 are identical
whether the nonlinearity material parameters are chosen with different values (n=0.50,

n=1,and n=1.30).

Their deflection configuration results for n=0.50, n=1.00, and n=1.30 are
displayed in Table 5.11, 5.12, and 5.13, respectively.
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Table 5.11 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and &, =0.003
Configuration

6, (rad) W
1 0.2 0.032822
2 04 0.114631
3 0.8 0.429035
4 1.2 0.960698
5 1.6 1.742620
6 2.0 2.828475
7 2.4 4.303349
8 2.8 6.304648
9 3.14 8.589725

Table 5.12 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and g, =0.003
Configuration

6, (rad) W
1 0.2 1.201348
% 0.4 2.293112
3 0.8 4.884284
4 1.2 7.492988
5 1.6 10.325675
6 2.0 13.505594
7 2.4 17.220642
8 2.8 21.790026
9 3.14 26.795572
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Table 5.13 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

Configuration

n=1.30and &, =0.003

6, (rad) W
1 0.2 2.528194
2 04 4.509101
3 0.8 8.011507
4 1.2 11.319434
5 1.6 14.679141
6 2.0 18.291713
7 2.4 22.407013
8 2.8 27.431040
9 3.14 18.291713
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example except &, =0.004. The results listed in Table 5.14 as shown below.

Example 4

As the fourth example, all the parameters are kept the same as in the first

Table 5.14 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.004 and nvarying from 0.50,0.75..2.00

W
% ¢, =0.004
(rad)

n=050 n=075 n=100 n=150 n=175 n=200

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.035582 0.389820 1.201348 3.317766  4.286590 0.062499
0.4 0.120414 0.924927 2.277383 5.687636 7.021656 7.820182
0.6 0.255020 1.555891 3.635229  7.637986 9.178778 10.476525
0.8 0.441169 2.268280 4.884284  9.619852 11.305771 12.400989
1.0 0.681503 3.057446 6.166397 11.413386 13.187961 13.593150
1.2 0.979596 3.877723 7473941 13.162219 14.539671 16.278647
1.4 1.340087 4.871322 7.783359 14.812065 15.288596 18.035269
1.6 1.768874 5.907026 10.251237 16.644437 17.784550 19.518374
1.8 2.273389 7.041096 11.862454 18.463709 18.823767 21.158680
2.0 2.862963 8.221918 13.505493 20.358031 20.344134 23.346221
2.2 3.549339 9.663816 15.257827 22.048832 24.062405 25.325457
2.4 4347392  11.194645 17.228803 24.382639 26.311047 27.413831
2.6 5.276152  12.730916 19.365026 26.167583 28.725912 29.083274
2.8 6.360306  14.858255 21.789895 28.031553 30.225745 32.358214
3.0 7.632470 17.094410 24.568438 32.758908 34.568787 35.464044
3.14 8.657857 18.876985 26.660928 35.116941 36.784581 37.923861
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Shown in the figure below is the relationship of the load-displacement curve
(&, =0.004) for the nonlinearly cantilever beam between the follower distributed load W

and the rotation angle 6.

W 35
30 4
25

20 H

0.0 0.5 1.0 1.5 2.0 25 30 35
7

0

Figure 5.16 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.004

The equilibrium configurations ( €, =0.004) for 6,=1.2 and 6,=2.0 are
displayed in the Fig. 5.17.

Figure 5.17 Equilibrium configurations for 8, =1.2 and 6, =2.0
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The nonlinearity material parameters n=0.50, n=1.00, and n=1.30 are
selected to show the deflection configuration in the Fig. 5.18, 5.19 and 5.20, respectively.

'1.0 T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.18 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50

Figure 5.19 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00
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Figure 5.20 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Their deflection configuration results are displayed in tables below.

Table 5.15 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and ¢, =0.004
Configuration

6, (rad) W
1 0.2 0.035582
2 0.4 0.120414
3 0.8 0.441169
4 1.2 0.979596
5 1.6 1.768874
6 2.0 2.862963
7 2.4 4.347392
8 2.8 6.360306
9 3.14 8.657857
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Table 5.16 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and ¢, =0.004
Configuration

6, (rad) W
1 0.2 1.201348
2 0.4 2.277383
3 0.8 4.884284
4 1.2 7.473941
5 1.6 10.251237
6 2.0 13.505493
7 2.4 17.228803
8 2.8 21.789895
9 3.14 26.660928

Table 5.17 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and &, =0.004
Configuration

0, (rad) W
1 0.2 2472334
2 0.4 4.438722
3 0.8 7.926483
4 1.2 11.225448
5 1.6 14.491682
6 2.0 18.183139
7 2.4 22.159412
8 2.8 27.303193
9 3.14 32.869493
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example except &, =0.005. The results listed in Table 5.18 as shown below.

Example 5

As the fifth example, all the parameters are kept the same as in the first

Table 5.18 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.005 and nvarying from 0.50,0.75..2.00

W
% &, =0.005
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.038297 0.400227 1.201348 3.302631 3.973818 4.705009
0.4 0.126113 0.739948 2410405 5571141 6.712540 7.829850
0.6 0.263825 1.567632 3.635229  7.606468 9.015434  9.827292
0.8 0.453184 2.218337 4.884284  9.481738 10.799546 12.170138
1.0 0.696829 3.086207 6.166776 10.996878 12.961780 14.168972
1.2 0.998375 3.955917 7.492088 13.011282 14.759472 15.969968
14 1.362396 4.956411 8.874687 14.744769 16.524495 17.721293
1.6 1.794927 5.945479  10.325675 16.498332 18.291967 19.376565
1.8 2.303406 7.057828  11.862520 18.300835 20.094646 21.187090
2.0 2.897210 8.169428  13.505593 20.183303 21.966638 23.054156
2.2 3.588143 9.712033  15.280556 22.182026 23.946989 24.981956
24 4.391156 11.16569  17.220624 24.342518 26.084386 27.061539
2.6 5.325375 12.96749  19.370067 26.725423 28.347968 29.405176
2.8 6.415627 1491857  21.790003 29.417081 31.130740 31.945413
3.0 7.694716 17.15993  24.568442 32.429344 34.095509 35.056072
3.14  8.725589 18.94676  26.627199 35.103484 34.745571 37.263899
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The relationship of the load-displacement curve (&, =0.005) for the nonlinearly

cantilever beam between the follower distributed loadW and the rotation angle &, are
demonstrated with the figure below.

W 35-
30
25
20

154

Figure 5.21 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.005

The load—displacement curves of the cantilever beam with various material
nonlinearity parameters n are plotted in Fig. 5.21. Demonstrated in this figure is the load—
displacement curves to play a key role in explaining the behavior of the cantilever beam

for all three possible cases (n=1,n<1, and n>1) with & =0.005.

It is similar to &, =0.001, a linear case n=1 (Fig. 5.21), the well-known load-
displacement curve is monotonic and stable. As it can be seen from the Fig. 5.21, the
follower distributed load W increases as the rotation angle 6, increases.
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The equilibrium configurations (& =0.005) for 6,=1.2 and 6,=2.0 are
selected to indicate in the Fig. 5.22.

n=130 * h=1.00

Figure 5.22 Equilibrium configurations for 8, =1.2 and 6, =2.0

Furthermore, the nonlinearity material parameters n=0.50,n=1.00, and
n=1.30 are selected to show the deflection configuration in the Fig. 5.23, 5.24 and 5.25,
respectively.

0.04

-0.2

0.4 -

-0.6

-0.8

'1 0 T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.23 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50
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Figure 5.24 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00

0.0+

-0.2

0.4

-0.6
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Figure 5.25 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30
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Table 5.19 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and &, =0.005
Configuration

6, (rad) W
1 0.2 0.038297
2 04 0.126113
3 0.8 0.453184
4 1.2 0.998375
5 1.6 1.794927
6 2.0 2.897210
7 2.4 4.391156
8 2.8 6.415627
9 3.14 8.725589

Table 5.20 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and &, =0.005
Configuration

6, (rad) W
1 0.2 1.201348
2 04 2.410405
3 0.8 4.884284
4 1.2 7.492988
5 1.6 10.325675
6 2.0 13.505593
7 2.4 17.220624
8 2.8 21.790003
9 3.14 26.627199
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Table 5.21 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and¢&, =0.005
Configuration

6, (rad) W
1 0.2 2.424564
2 04 4377278
3 0.8 7.851029
4 1.2 10.849223
5 1.6 14.486503
6 2.0 17.836980
7 2.4 21.967941
8 2.8 27.187173
9 3.14 32.739442
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example except &, =0.006. The results listed in Table 5.22 as shown below.

Example 6

As the sixth example, all the parameters are kept the same as in the first

Table 5.22 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.006 and nvarying from 0.50,0.75..2.00

W
% &, =0.006
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.040976 0.409901 1.201348  3.148763 3.995441 4.167546
0.4 0.131737 0.956846 2410405 5468486 6.426896 7.612709
0.6 0.272511 1.597078 3.635229  7.491667 8.691016  9.954955
0.8 0.465028 2.317391 4.884284  9.323829 10.896245 12.019552
1.0 0.711944 3.113681 6.166776 10.925664 12.669351 13.817577
1.2 1.016866 3.986680 7.492088 12.875108 14.551091 15.697037
14 1.384479 4.940534 8.874687 14.603503 16.309814 17.441472
1.6 1.820748 5.982459  10.325675 16.352287 18.071387 19.114094
1.8 2.333177 7.122768  11.862520 18.150111 19.868270 20.834232
2.0 2.931194 8.375358  13.505593 20.027788 21.734288 22.754923
2.2 3.626664 9.758568  15.280556 22.021389 23.708175 24.675507
24 4434615 11.296562 17.220624 24.176180 25.838259 26.746757
2.6 5.374279  13.021481 19.370067 26.552400 28.189005 28.914848
2.8 6.470615 14.976876 21.790003 29.235776 29.496491 31.169994
3.0 7.756618  17.223375 24.568443 32.356454 33.950562 33.825173
3.14 8.792960 19.014456 26.795508 34.921646 36.182802 36.345580
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The relationship of the load-displacement curve (&, =0.006) for the nonlinearly

cantilever beam between the follower distributed load W and the rotation angle &, are
demonstrated with the figure below.

W 35-
30
25
20

154

Figure 5.26 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.006

The equilibrium configurations ( & =0.006) for €,=1.2 and 6,=2.0 are
selected to indicate in the Fig. 5.27.

“*n=1.00

Figure 5.27 Equilibrium configurations for &, =1.2 and 6, =2.0
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Furthermore, the nonlinearity material parameter n=0.50,n=1.00, and
n=1.30 are selected to show the deflection configuration in the Fig. 5.28, 5.29 and 5.30,
respectively.

0.0 4

-0.2

-0.44

-0.6 1

-0.8 4

04  -02 0.0 02 0.4 0.6 0.8 1.0 12
Figure 5.28 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50
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Figure 5.29 Deflection configurations of the nonlinearly cantilever beam subjected to
follower distributed load n=1.00
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Figure 5.30 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Table 5.23 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and ¢, =0.006
Configuration

6, (rad) W
1 0.2 0.040976
2 0.4 0.131737
3 0.8 0.465028
4 1.2 1.016866
5 1.6 1.820748
6 2.0 2.931194
7 2.4 4.434615
8 2.8 6.470615
9 3.14 8.792960
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Table 5.24 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and &, =0.006
Configuration

6, (rad) W
1 0.2 1.201348
2 04 2.410405
3 0.8 4.884284
4 1.2 7.492988
5 1.6 10.325675
6 2.0 13.505593
7 2.4 17.220624
8 2.8 21.790003
9 3.14 26.795508

Table 5.25 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and ¢, =0.006
Configuration

6, (rad) W
1 0.2 2.382651
2 04 4.322404
3 0.8 7.782682
4 1.2 11.064441
5 1.6 14.402936
6 2.0 17.900352
7 2.4 22.087475
8 2.8 27.079972
9 3.14 32.619123
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example except &, =0.007. The results listed in Table 5.26 as shown below.

Example 7

As the seventh example, all the parameters are kept the same as in the first

Table 5.26 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.007 and nvarying from 0.50,0.75..2.00

W
% &, =0.007
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.043625 0.418980 1.201348 3.076992 3.726706  4.363295
0.4 0.137302 0.971522 2410405 5.115417 6.375783  7.279405
0.6 0.281119 1.616190 3.635229  7.324731 8.630961 9.743064
0.8 0.476788 2.340321 4.884284  9.209134 10.435752 11.486439
1.0 0.726965 3.140056 6.166776 10.843886 12.578253 13.587470
1.2 1.035273 4.016267 7.492988 12.574744 14.182070 15.440389
14 1.406424 4973211 8.874687 14.473858 15.993959 17.102494
1.6 1.846408 6.018167  10.325675 16.041853 17.870449 18.916985
1.8 2.362769 7.161514  11.862520 17.913712 19.661736 20.671316
2.0 2.964982 8.417214  13.505593 19.884386 21.522013 22.483568
2.2 3.664972 9.803677  15.280556 21.873091 23.489730 24.397263
2.4 4477843  11.345151 17.220624 23.921537 25.612855 26.460621
2.6 5.422928 13.073886 19.370067 26.266941 27.955323 28.560333
2.8 6.525323  15.033581 21.790003 29.067836 29.338203 31.148469
3.0 7.818212  17.285080 24.568444 32.178056 33.353210 33.450571
3.14 8.860008 19.080261 26.615320 33.605084 36.087674 35.082146
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The relationship of the load-displacement curve (&, =0.007) for the nonlinearly

cantilever beam between the follower distributed load W and the rotation angle &, are
demonstrated with the figure below.

W 354
30 4 n=1.30 )
25 4
20 - n=1.00

154

10 4

Figure 5.31 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.007

The equilibrium configurations ( & =0.007) for €,=1.2 and 6,=2.0 are
selected to indicate in the Fig. 5.32.

Figure 5.32 Equilibrium configurations for 8, =1.2 and 6, =2.0
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Furthermore, the nonlinearity material parametern=0.50,n=1.00, and
n=1.30are selected to show the deflection configuration in the Fig. 5.33, 5.34 and 5.35,
respectively.

'1.0 T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.33 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50

0.0+

-0.24

-0.4

-0.6

-0.8+

Figure 5.34 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00
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Figure 5.35 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Table 5.27 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and s, =0.007
Configuration

6, (rad) W
1 0.2 0.043625
2 0.4 0.137302
3 0.8 0.476788
4 193 1.035273
5 1.6 1.846408
6 2.0 2.964982
7 2.4 4.477843
8 2.8 6.525323
9 3.14 8.860008
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Table 5.28 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and ¢, =0.007
Configuration

6, (rad) W
1 0.2 1.201348
2 04 2.410405
3 0.8 4.884284
4 1.2 7.492988
5 1.6 0.325675
6 2.0 13.505593
7 2.4 17.220624
8 2.8 21.790003
9 3.14 26.615320

Table 5.29 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and ¢, =0.007
Configuration

6, (rad) W
1 0.2 2.345222
2 04 4.272630
3 0.8 7.719904
4 1.2 10.993487
5 1.6 14.301371
6 2.0 17.688044
7 2.4 21.996624
8 2.8 26.979744
9 3.14 32.506505
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example except &, =0.008. The results listed in Table 5.30 as shown below.

Example 8

As the eighth example, all the parameters are kept the same as in the first

Table 5.30 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.008 and nvarying from 0.50,0.75..2.00

W
% &, =0.008
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.042283 0.427561 1.201348 3.012606 3.472735 4.275976
0.4 0.142812 0.985517 2410405 5.292216 6.133971 6.667443
0.6 0.289650 1.634510 3.635229  7.195807 8.385512 9.412610
0.8 0.488449 2.362377 4.884284  8.963237 10.398294 11.355869
1.0 0.741869 3.165492 6.166776  10.215635 11.670345 12.756520
1.2 1.053548 4.044861 7.492088 12.378904 14.188537 15.087512
14 1.428218 5.004843 8.874687 14.267386 15.861205 16.957755
1.6 1.871902 6.052780  10.325675 16.093254 17.685191 18.679792
1.8 2.392180 7.199116  11.862520 17.791077 19.471028 20.401969
2.0 2.998574 8.457876  13.505593 19.747971 21.325774 22.141897
2.2 3.703067 9.847541  15.280556 21.529422 23.286668 24.141347
24 4520841  11.392437 17.220624 23.763703 25.351900 24.141347
2.6 5.471327  13.124921 19.370067 26.242613 27.738601 28.459253
2.8 6.579756  15.088837 21.735301 28.910720 29.613800 30.155835
3.0 7.879495  17.345244  24.224703 31.843347 32.976371 32.429332
3.14  8.926707  19.144442  26.792420 33.885535 35.864798 32.429330
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The relationship of the load-displacement curve (&, =0.008) for the nonlinearly

cantilever beam between the follower distributed load W and the rotation angle &, are
demonstrated with the figure below.

W 304
25
20

154

Figure 5.36 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.008

The equilibrium configurations ( & =0.008) for 6,=1.2 and 6,=2.0 are
selected to display in the Fig. 5.37.

Figure 5.37 Equilibrium configurations for 8, =1.2 and 6, =2.0
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Furthermore, the nonlinearity material parameters n=0.50,n=1.00, and
n=1.30 are selected to show the deflection configuration in the Fig. 5.38, 5.39 and 5.40,
respectively.
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Figure 5.38 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50

Figure 5.39 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00
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Figure 5.40 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Table 5.31 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and ¢, =0.008
Configuration

6, (rad) W
1 0.2 0.042283
2 0.4 0.142812
3 0.8 0.488449
4 193 1.053548
5 1.6 1.871902
6 2.0 2.998574
7 2.4 4.520841
8 2.8 6.579756
9 3.14 8.926707
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Table 5.32 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and &, =0.008
Configuration

6, (rad) W
1 0.2 1.201348
2 0.4 2.410405
3 0.8 4.884284
4 1.2 7.492988
5} 1.6 10.325675
6 2.0 13.505593
7 2.4 17.220624
8 2.8 21.735301
9 3.14 26.792420

Table 5.33 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and¢&, =0.008
Configuration

6, (rad) W
1 0.2 2311362
2 0.4 4.226970
3 0.8 7.661656
4 9 10.512203
5 1.6 14.160443
6 2.0 17.784572
7 2.4 21.910731
8 2.8 26.701534
9 3.14 32.400208
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example except &, =0.009. The results listed in Table 5.34 as shown below.

Example 9

As the ninth example, all the parameters are kept the same as in the first

Table 5.34 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.009 and nvarying from 0.50,0.75..2.00

W
% &, =0.009
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.048857 0.435717 1.201348 2.829611 3.682674  4.279377
0.4 0.148279 0.998924 2410405 5.150877 5.669855 7.069134
0.6 0.298116 1.652138 3.635229  7.012241 8.170487 9.362910
0.8 0.500026 2.383666 4.884284  9.045394 10.035450 11.385183
1.0 0.756671 3.190101 6.166776  10.719117 11.863989 13.157925
1.2 1.071704 4.072578 7.492088 12.441180 13.957979 14.929130
14 1.449881 5.035549 8.874687 14.241098 15.767341 16.637077
1.6 1.897250 6.086421  10.325675 15.973252 17.515763 18.455046
1.8 2.421430 7.235702  11.862520 17.761904 19.292924 20.122557
2.0 3.031989 8.497479  13.505593 19.627280 21.142739 21.910108
2.2 3.740970 9.890297  15.280556 21.416982 23.022681 23.718358
24 4563630 11.438563 17.220624 23.743539 25.098780 25.812961
2.6 5.519505  13.174737 19.370067 25.978212 27.525141 28.058526
2.8 6.633972  15.142806 21.782721 28.762620 29.561947 30.730084
3.0 7.940806  17.404035 24.441044 31.624124 32.823993 33.449554
3.14 8993232 19.207177 26.794311 33.914010 34.640489 36.255189
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The relationship of the load-displacement curve (&, =0.009) for the nonlinearly

cantilever beam between the follower distributed load W and the rotation angle &, are
demonstrated with the figure below.

W 35-
304
254

201

Figure 5.41 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.009

The equilibrium configurations ( & =0.009) for §,=1.2 and 6,=2.0 are
chosen to indicate in the Fig. 5.42.

. *n=1.00

Fig 5.42 Equilibrium configurations for €, =1.2 and 6, =2.0

90



Furthermore, the nonlinearity material parameters n=0.50,n=1.00, and
n=1.30 are selected to show the deflection configuration in the Fig. 5.43, 5.44 and 5.45,
respectively.
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Figure 5.43 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50
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Figure 5.44 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00
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Figure 5.45 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Table 5.35 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and ¢, =0.009

Configuration

6, (rad) W
1 0.2 0.048857
2 0.4 0.148279
3 0.8 0.500026
4 193 1.071704
5 1.6 1.897250
6 2.0 3.031989
7 2.4 4.563630
8 2.8 6.633972
9 3.14 8.993232
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Table 5.36 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and¢&, =0.009
Configuration

6, (rad) W
1 0.2 1.201348
2 0.4 2.410405
3 0.8 4.884284
4 1.2 7.492988
5 1.6 10.325675
6 2.0 13.505593
7 2.4 17.220624
8 2.8 21.782721
9 3.14 26.794311

Table 5.37 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and¢g, =0.009
Configuration

6, (rad) W
1 0.2 2.280423
2 04 4.184718
3 0.8 7.607192
4 1.2 10.646678
5 1.6 14.184550
6 2.0 17.756516
7 2.4 20.816045
8 2.8 26.951947
9 3.14 32.299234
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Example 10

As the tenth example, all the parameters are kept the same as in the first
example except &, =0.01. The results listed in Table 5.38 as shown below.

Table 5.38 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material: &, =0.01 and nvarying from 0.50,0.75..2.00

W
% & =0.01
(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.051445 0.443503 1.201348 2.901503 3.593247 3.983886
0.4 0.153704 1.011815 2410405 5.143261 5.921480 6.921757
0.6 0.306518 1.669155 3.635229  7.120768 7.907919  8.805891
0.8 0.511521 2.404274 4.884284  8.957290 10.280682 10.993522
1.0 0.771376 3.213972 6.166776 10.278962 12.045345 13.028472
1.2 1.089749 4.099510 7.492088 12.425871 13.559527 14.490595
14 1.471416 5.065425 8.874687 13.724187 15.531799 16.546260
1.6 1.922456 6.119190  10.325675 15.735595 17.316238 18.255472
1.8 2.450523 7.271376  11.862520 17.646945 18.973345 19.815532
2.0 3.065234 8.536127  13.505593 19.444520 20.876250 21.781018
2.2 3.778688 9.932056  15.280556 21.563133 22.796860 23.652007
24 4606218  11.483645 17.220624 23.738057 24.659520 25.700992
2.6 5.567467  13.223455 19.370067 25.361291 27.216084 27.884587
2.8 6.688031  15.195612 21.790003 28.498975 29.063963 30.012854
3.0 8.001651  17.461587 24.290324 30.195000 32.586661 31.322268
3.14 9.059432 19.268608 26.459706 32.977805 35.095894 32.315460
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The relationship of the load-displacement curve (&, =0.01) for the nonlinearly

cantilever beam between the follower distributed load W and the rotation angle &, are
demonstrated with the figure below.

W 30
25 1
20 H
n=1.00
15 1
10 - n=0.50
é H H -~
. ; i -~
5
01
LA ' B
T T T - T f T T 1
0.0 0.5 1.0 1.5 2.0 25 3.0 35

Hﬂ
Figure 5.46 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.01

The equilibrium configurations (&, =0.01) for 6, =1.2 and 6, =2.0 are
chosen to indicate in the Fig. 5.47.

Figure 5.47 Equilibrium configurations for 8, =1.2 and 6, =2.0
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Furthermore, the nonlinearity material parameters n=0.50,n=1.00, and
n=1.30 are selected to show the deflection configuration in the Fig. 5.48, 5.49 and 5.50,
respectively.

0.0+

-0.21

-0.4-

-064
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6
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-0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.48 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.50
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Figure 5.49 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.00
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Figure 5.50 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

Table 5.39 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.50

n=0.50and &, =0.01
Configuration

6, (rad) W
1 0.2 0.051444
2 0.4 0.153704
3 0.8 0.511521
4 % 1.089748
5 1.6 1.922455
6 2.0 3.065234
7 2.4 4.606218
8 2.8 6.688030
9 3.14 9.059432
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Table 5.40 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.00

n=1.00and¢, =0.01
Configuration

6, (rad) W
1 0.2 1.201347
2 04 2.410405
3 0.8 4.884283
4 1.2 7.492987
5 1.6 10.325674
6 2.0 13.505593
7 2.4 17.220623
8 2.8 21.790002
9 3.14 26.459706

Table 5.41 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

n=1.30and ¢, =0.01
Configuration

6, (rad) W
1 0.2 2.251925
2 04 4.145347
3 0.8 7.555952
4 1.2 10.806230
5 1.6 14.033920
6 2.0 17.593188
7 2.4 21.541696
8 2.8 26.700222
9 3.14 32.202834
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As described above, most of them only mentioned the relationship of the load-
displacement curves (&,). In the figure below, the relationship of the load-displacement
curve (n=0.5) for the nonlinearly cantilever beam between the follower distributed load
W and the rotation angle &, are demonstrated.

W 16 -
14 -

12 H

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35

v

0

Figure 5.51 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load n=0.5

The load—displacement curves of the cantilever beam with various elastic
material parameters &, are plotted in Fig. 5.51. Displayed in this figure is the load—
displacement curves to play a major role in detailing the behavior of the cantilever beam
for all three possible cases (&, =0.001, &, =0.01, and ¢, =0.1) with n=0.5.

It is very interesting and remarkable that the three well-known load-
displacement curves are monotonic and stable. Furthermore, it is similar to the load-

displacement curves (&,). As it can be seen from the Fig. 5.51, the follower distributed

load W increases as the rotation angle 6, increases.
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Displayed in the figure below is the relationship of the load-displacement curve
(n=1.30) for the nonlinearly cantilever beam between the follower distributed load W

and the rotation angle &, are shown.

W 40+

304

20 4

10 -

0.0 05 1.0 15 2.0 25 3.0 35
o,
Figure 5.52 Load-displacement curve for the nonlinearly cantilever beam subjected to

follower distributed load n=1.30

The load—displacement curves of the cantilever beam with various elastic
material parameters &, are plotted in Fig. 5.52.The behaviors of the cantilever beam for

all three possible cases (&, =0.1,&,=0.01, and &, =0.001) with n=1.30 are described.

It is very interesting that the follower distributed loads W for elastic material
parameters &, =0.001 with n=1.30 increase rapidly whereas the elastic material

parameters &, =0.001 with n=0.50 grow gradually. However, it is remarkable from the

Fig. 5.52 that the follower distributed load W increases as the rotation angle 6, increases.
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5.1.2 Case 2: nand &, are related to each other

However, such mentioned expression of the constitutive relationship has
one shortcoming—the stress gradient goes to infinity when the strain value reaches zero

[38]. In our computation, we assume that the set of material parameters (i.e., &,and n)

can be related to each other. Technically, the initial slopes of the stress-strain curves are
utilized to obtain the relationship. Hence the initial slopes of the stress—strain curve can

be achieved by differentiating Eq. (3.2) [c = E {(|g| +&, )Un —gé’”} ]. After differentiating,
it can be written as

d 1 n
iZHEZ((Q‘*‘gO)n ' (51)

By settinge =0, Eq. (5.1)

do E, n
L2 n 5.2
de 1 (50) (5.2)
1-n
id_(f — (80) . , (53)
E, de n
1do (5.4)
E, de
Dividing Eq. (5.3) by Eq. (5.4), it can be obtained
1-n
E_(&)" (5.5)
E, n
Let E, =ak,
1-n
1 (&) (5.6)
o n
n n
;:(go)n , (5.7)
Finally, the result gives
& :(EJH : for n=1 (5.8)
(24
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Where the initial slope of the stress-strain curve in generalized Ludwick model
is defined as E . For the example, if the initial slopes are given by 0.5E , E, and 2E,

n n n
and the relationship between &, =(2n)i-n, & =(n)n and & =(Nn/2)r, respectively. It

should be noted that Eq. (5.8) does not valid for n=1. If n=1, &, would set to be zero

automatically. In our numerical experiments, the initial slopes are chosen to be 0.5E and
2E , to show the difference between linear and nonlinear constitutive relationships.

a

— A

E ~
E2= (IE1 /

P
L

£
Figure 5.53 Comparison of stress—strain curve between linear and nonlinear

generalized Ludwick material

To point out the nonlinear constitutive relationships clearly and simply we have
chosen the two following numerical examples, the rectangular cross-section of cantilever
beam is subjected to several different follower distributed loads with the degree of
material nonlinearityn.

The first case of the cantilever beam with non-dimensional geometric
parameters b =0.2mandh =0.2m. The nonlinearity material parameters to determine

n
are n>landé, =(2n)rn,

The second case of the cantilever beam with non-dimensional geometric
parameters b =0.2mandh =0.2m. The nonlinearity material parameters to determine

are n<1 andég, :(nIZ)ﬁ.

The first two tables below are illustrated the numerical results in sequence.
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The result listed in Table 5.42 can be interpreted that when using n>1, the
rotation angle 6, and the follower distributed load W are both increase their values. In

contrast, Table 5.43 demonstrated that when applying n<1, the rotation angle &,
successively increases with the follower distributed load W.

Table 5.42 Numerical results for cantilever beam made of the generalized Ludwick

nonlinear elastic material n >1 |, b=02mandh=0.2m

W
n

(rad) & =(2n)er
n=1.10 n=1.20 n=1.30 n=1.45 n=1.50
0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 1.68619 2.00236 2.11785 2.17475 2.18264
0.4 3.18441 3.72440 3.95424 4.07691 4.09360
0.6 4.63272 5.34237 5.66153 5.83345 5.85515
0.8 6.06606 6.91150 7.30042 7.50542 7.52825
1.0 7.50603 8.46367 8.82720 9.13123 9.15278
1.2 8.97021 10.02265 10.42959  10.71907 10.67532
14 10.47533  11.60927  12.12867  12.27408 12.28291
1.6 12.03887  13.24407  13.70155  13.82244 13.77604
1.8 13.68047 1494909 1551492  15.91570 15.43175
2.0 15.42334  16.74968  17.06725  17.21551 17.38962
2.2 17.29611 18.67661  18.58015 19.37626 19.16765
2.4 19.33549  20.76904  21.35352  21.12029 21.36808
2.6 21.59041 23.07919 22.39006  23.37350 23.52711
2.8 24.12888 25.68023  26.01780 24.79714  26.00898
3.0 27.05016  28.51741  29.26955  25.78840 27.68192
3.14 29.40196 31.10185 31.46138 31.33843  29.32568
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Table 5.43 Numerical results for cantilever beam made of the generalized Ludwick
nonlinear elastic material n<1, b =0.2mandh =0.2m

7 e
(rad) o~ (E)

n=0.55 n=0.65 n=0.75 n=0.85 n=0.95
0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.57700 0.63391 0.64521 0.70084 0.98283
0.4 1.32022 1.33252 1.36696 1.51303 2.04463
0.6 2.06404 2.09450 2.15584 2.39894 3.15034
0.8 2.87544 2.92139 3.00960 3.34930 4.29766
1.0 3.82517 3.81699 3.92982 4.36308 5.49065
1.2 452891 4.78707 4.92084 5.44362 6.73660
14 5.61243 5.83952 5.98951 6.59744 8.04496
1.6 6.88814 6.98461 7.14524 7.83399 9.42775
18 7.61699 8.23546 8.40041 9.16593 10.90002
2.0 9.69558 9.60880 9.77101 10.60975  12.48068
2.2 11.33385 11.12606 11.27775 12.18684 14.19385
24 12.90037  12.81505 12.94765  13.92525 16.07088
2.6 14.87062  14.71242  14.81659  15.86234 18.15356
2.8 17.02910 16.86767  16.70870  18.04921 20.49942
3.0 19.89465  19.34963  19.27945  20.55803  23.19071
3.14 19.97827 20.60874  21.33293  22.56080 25.34391
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Furthermore, the relationship of the load-displacement curve for the nonlinearly
cantilever beam between the follower distributed load W and the rotational angle &, are
exhibited with the figure below.

W 35_
304 . n=1.30
251
20 4
154

10 4

T T T 12 T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35

90
Figure 5.54 Load-displacement curve for the nonlinearly cantilever beam subjected to
follower distributed load n=0.55, n=1.00, and n=1.30

Since the Ludwick-type constitutive law has one major shortcoming as
mentioned before, the large deflection behavior of a cantilever beam obeying generalized
Ludwick’s material model subjected to follower distributed load is discussed in this
section. The load—displacement curves of the cantilever beam with various material
nonlinearity parameters N are plotted in Fig. 5.54.

It is remarkable that a linear case n=1 (Fig. 5.54), the well-known load-
displacement curve is monotonic and stable as described in case 1. As it can be seen from

the Fig 5.54, the follower distributed load W increases as the rotation angle &, increases.

For the case of hardening material, where n>1 and n<1 (Fig. 5.54), the
behaviors of the cantilever beam are similar to the linear casen =1.
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The equilibrium configurations for 6, =12 and 6,=2.0 are selected to
indicate in the Fig. 5.55.

Figure 5.55 Equilibrium configurations for ¢, =1.2 and 6, =2.0

In addition, the nonlinearity material parameter n =0.55 is selected to show the
deflection configuration.
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Figure 5.56 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=0.55 with &, =(0.5n)in (Table 5.44)

106



Otherwise, the nonlinearity material parameter n =1.30 is chosen to demonstrate
the deflection configuration.

0.0

0.2

0.4

0.6 4

084

_1 .D T T T - T T T T T
0.6 0.4 -0.2 0.0 0.2 04 0.6 0.8 1.0 12

Figure 5.57 Deflection configurations of the nonlinearly cantilever beam subjected to

follower distributed load n=1.30 with &, =(2n)rn (Table 5.45)

As described in case 1, the deflected shapes with the same slope angle in the
Fig. 5.56 and 5.57 are indistinguishable whether the nonlinearity material parameters are
chosen with different values (n=0.55and n=1.30). It is remarkable that the follower

distributed load W increases as the rotation angle &, increases.

Their deflection configuration results are displayed in Table 5.44 and 5.45,
respectively.
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Table 5.44 Numerical results for cantilever beam made of the generalized Ludwick

material for n=0.55

Configuration

n=0.55and ¢, = (0.5n)%

6, (rad) W
1 0.2 0.57700
2 0.4 1.32022
3 0.8 2.87544
4 1.2 4.52891
5 1.6 6.88814
6 2.0 9.69558
7 24 12.90037
8 2.8 17.02910
9 3.14 19.97827

Table 5.45 Numerical results for cantilever beam made of the generalized Ludwick

material for n=1.30

Configuration

n

n=130and¢, =(2n)n

6, (rad) W
1 0.2 211785
2 0.4 3.95424
3 0.8 7.30042
4 1.2 10.42959
5 1.6 13.70155
6 2.0 17.06725
7 2.4 21.35352
8 2.8 26.01780
9 3.14 31.46138
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Displayed in the figures below are an explanation of stress—strain relationships
for generalized Ludwick constitutive law by setting the initial slopes0.5E , E, and 2E,

n n
with the three conditions of the supplementary parameter &, = (ZH)H , € =(n)1*", and

n

& =(n/2)n respectively.

o 141
124 n=1
f
e
1.0
0.8+
0.6+
0.4+
----- 0.5E (n>1)
—— E(n>1, n<1)
0.24 2E (n<1)
g AN & W5 e Linear Case (n=1)
00 T T T T T T 1
0.0 02 04 06 0.8 10 12 14
&

Figure 5.58 Stress—strain relationships in tensile domain for generalized Ludwick

o 0.08

=+« == gM0.5E
——="E

Linear Case

0.00

Figure 5.59 Stress—strain relationships (adjusted scale) in tensile domain for

generalized Ludwick
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5.1.3 Effects of the dimension of the cross-section

Furthermore, the Fig. 5.60 and 5.61 are illustrated the effects of changing
the dimensions of the cross-section (b =0.1-0.2mandh=0.1-0.2m) in the
relationships of the load-displacement curves n=0.5 with varying &, =0.001 and
& =0.002 .

W 10+

Figure 5.60 Load-displacement for the nonlinearly cantilever beam subjected to
follower distributed load &, =0.001 and n=0.50

Wn -

Figure 5.61 Load-displacement for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.002 and n=0.50
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Otherwise, the Fig. 5.62 and 5.63 are revealed the effects of changing the
dimensions of the cross-section (b =0.1-0.2mandh =0.1-0.2m) in the relationships
of the load-displacement curves n=1.30 with varying &, =0.001 and &, =0.002 .

W4

£,=0.001,n=1.3 b=0.1,h=0.1

0.0 0.5 1.0 15 2.0 25 3.0 a5

Figure 5.62 Load-displacement for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.001 and n=1.30

Wia-
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Figure 5.63 Load-displacement for the nonlinearly cantilever beam subjected to

follower distributed load &, =0.002 and n=1.30
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As displayed in the Fig. 5.60, 5.61, 5.62, and 5.63, it is worth noting that when
varying the width of the cross-section (5), there is no effect to the behavior of the beam
since the width (5) is canceled in Eq. (3.18). However, the height (ﬁ) influences to the

behavior of the beam where the stiffness of the beam increases as the height (h)
increases.
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CHAPTER 6
CONCLUSIONS

6.1 Conclusions

In the presented study the large deflection behavior of the cantilever beam
subjected to follower distributed load where material of the cantilever beam obeys the
generalized Ludwick’s constitutive law is investigated. Both geometrical and material
nonlinearities are relevant to this problem since the material of the cantilever beam is
assumed to be nonlinearly elastic. This can be surpassed in a three-parametric generalized
Ludwick’s material model which is described and applied in this study of large deflections
of cantilever beam. Since the governing equations were highly nonlinear differential
equations, the closed-form solutions are in general impossible. Otherwise, the cantilever
beam problem has been solved numerically by the shooting method. We also have
generated an exact moment-curvature formula for materials which obey the generalized
Ludwick’s law.

Several numerical examples were selected to demonstrate the influence of the
geometry and configurations of the beam, loading conditions, and constitutive law of the
material on the deflection behavior of the discussed cantilever beam. Most of the load-
deflection curves revealed in chapter 5 are monotonic and stable.

From a practical standpoint, results obtained in this research study illustrate the
effects of the generalized Ludwick’s model. It can be concluded as the following.

6.1.1 The effects of nonlinearity materials on the large deflection behavior of a
cantilever beam obeying generalized Ludwick’s material model subjected to follower
distributed load are divided the set of parameters &,andn into two cases. The first case

is nand &, are varied independently. Second one is nand &, are related to each other.

6.1.2 In case 1 with cross-sectional area b =0.2mandh =0.2m, numerical
results with material nonlinearity parameters &, ranging from 0.001 to 0.003 and n
varying from 0.50,0.75..2.00 reveal that the follower distributed load increases as the

rotational angles goes up. On the other hand, the follower distributed load decreases while
employing &,(0.004—-0.008) with specifying the value of n at 0.75 and 2.00. However,

it is very interesting to take a note that the follower distributed loads and the rotational
angles are both rising their values if taking a look at value of n individually.



6.1.3 In case 2 with cross-sectional area b =0.2mandh =0.2m, specifying the

n
material nonlinearity parameters n>land ¢, = (2n)1*n , its numerical results (Table 5.42)

demonstrated that the follower distributed loads and the rotational angles both increase in
their values from n=1.10 to n=1.50. Interestingly, at the value of the rotational angle
g, =3.14 founded that n=1.20, n=1.30, and n=1.45 obtained close values of

follower distributed loads 31.10185, 31.46138, and 31.33843, respectively. Moreover, by

n
further employing the material nonlinearity parametersn <land &, = (0.5n)1fn , humerical

results (Table 5.43) illustrated that the follower distributed loads and the rotational angles
both increase for all the values of n.

6.2 Suggestions

This research study is believed that it is the first research that solve the problem
of the large deflection behavior of the cantilever beam subjected to follower distributed
load where material of the cantilever beam obeys the generalized Ludwick’s constitutive
law and the effect of nonlinearity materials on large deflection behavior of the beam
obeying generalized Ludwick’s constitutive law. Thus in this research study can be
developed for other applications as below.

6.2.1 According to presented study only dealt with the rectangular cross-section
of cantilever beam. For further research study can be handled the variety cross-sectional
shapes with varying longitudinal shape subjected to follower distributed load in which
more numerical effort is necessary.

6.2.2 The computational program Matlab may be upgraded more program
codes to carry out the numerical results more successively. As in case 2 (nand g, are

related to each other), the computational process cannot go through while specifying the
values of the nonlinearly parameter n greater than 1.80.

6.2.3 The material employing in this research study is a material where stress-
strain relationship obeys the generalized Ludwick’s constitutive law. One more
nonlinearly material can be established for further research on the large deflection
behavior of the cantilever beam subjected to follower distributed load is Ramberg-
Osgood’s Material.

What is more, the recent findings from this study will benefit the analysis and
design of the practical problems. This hands out as a benchmark for future experimental
investigations as well.
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APPENDIX A
RUNGE-KUTTA METHODS
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Runge—Kutta (RK) methods can be acquired by employing the accuracy of a
Taylor series approach without requiring the higher derivatives computation.

Yia = Y +6(%, ¥i,h)h (A1)

where ¢(xi, Vi, h) is called an increment function, which can be illustrated as a represent-
tative slope over the interval. In general, the increment function is given as

g=ak +ak,+---+ak, (A.2)

where the a’s are constant and the K ’s are
k= f(x,¥) (A.22)
k, = f(x +ph, Yy, +0q,kh) (A.2b)
Kk, = T (X + p,h, y, +0,kh+0,k;h) (A.2¢)
k,=f(X+p.uh Y +dkh+q,Kh++0q. .k, h) (A.2d)

where the P’s and (s are constants. Notice that the K’s are recurrence relationships.
That is, k,i=12,3,...,n. The most popular RK methods are fourth order. The most

commonly used form, namely the classical fourth-order RK method can be summarized
as below.

Yo=Y, +%(k1 42K, + 2K, +k,)h (A3)
where

k= (%, ¥:) (A.33)

1 1
k, = f (xi +hy, +§klh) (A.3b)

1 1
k, = f (xi +>hy, +§k2hj (A.3c)
k, = f(x+h,y; +kh) (A.3d)

For more details of this Runge—Kutta methods, be able to learn more from [39]
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APPENDIX B
NEWTON-RAPHSON METHOD



The Newton-Raphson equation (Fig B.1) is employed to the usage of root-
locating formulas. If the initial guess at the root is x;, a tangent is supposed to extend

from the point [xi, f (xi )] The point where the X axis usually reveals an improved

estimate of the root.

Figure B.1 Graphical depiction of the Newton-Raphson method
(Chapra Canale 2009. Numerical Methods for Engineers, 6th Edition)

A method relied on the Taylor series is applied to describe the behavior of the
calculation of the Newton-Raphson method. As in Fig B.1, the first derivative at X is
equivalent to the slope:

f'(xi)zw (B.1)
X — Xy
which can be rearranged to yield
X . =X — f.(xi) (B.2)

i+1 i f (Xi)

which is called the Newton-Raphson formula.

123



Recall from the Taylor series expansion can be represented as

. f(¢) 2
f(X0) = F00)+ F () (X —%)+ ol (Xi+1_Xi) (B.3)

where ¢ lies somewhere in the interval from X, to x,. An approximate version is
obtainable by truncating the series after the first derivative term:

f (Xi+1) = f (Xi)+ f I(Xi)(xm - Xi) (B.4)
O=f(x)+ f'(xi)(xi+1_xi) (B.5)
which can be solved for

)

X, L ——
)

which is identical to Eq. (B.2). Apart from the derivation, the Taylor series can also be
established to estimate the error of the formula. For this situation x,,, = X, where X is the

true value of the root. Substituting this value along with f(x ) =0 into Eq. (B.3) yields

. f(¢) 2
0= f(Xi)+f (Xi)(xr_xi)+T(Xr_Xi) (B.6)

Equation (B.5) can be subtracted from Eq. (B.6) to give

0= £ 00)0s 5.0+ ) () 7

Now, realize that the error is equal to the discrepancy between X, and the true

value X, as in

Et,i+1 = Xr - Xi+l

and Eq. (B.7) can be expressed as

0= f(X)E, ., + f..z(::) £ (B8)
()
Eiin EETHO) Sy (B.9)

For more details of this Newton-Raphson method, be able to learn more from [39]
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APPENDIX C
SHOOTING METHOD



Shooting method is a method dealing with the equations where the integration
proceeds fromx tox,, and we try to match boundary conditions at the end of the

integration (Fig C.1). Newton-Raphson method plays important role to carry out this
problem.

T:‘ F2
l‘l

X X,

Figure C.1 Shooting method

(Numerical recipes in FORTRAN: The art of scientific computing)

1. Atthe starting point x, thereare N starting values Y, to be specified, but subjected
to n, conditions. Therefore n, =N —n, is the starting values. And a vector V is
equaled ton,x, . It can be written as below.

Yi(X1)ZYi(X1;V1’---’Vn2) i=1..,N (C.1)

2. Start integrating the ODEs from x, to X, at point x, and it can find the
differences between the integrating values and boundary conditions at x, . Now,
atx,, let us define a discrepancy vector F which equals to n,x, the same as

vectorV .
3. Newton-Raphson is proposed to solve the problem by finding a vector value of V

that zeros the vector value of F .
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Vnew :Vold +é\/ (CZ)
JeoV =—F (C.3)
The Jacobian matrix J has components given by

3 - oF

=—= CA4
] 8VJ ( )

It is not feasible to make a computation these partial derivatives analytically.

For more details of this shooting method, be able to learn more from [40]
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APPENDIX D
COMPUTATIONAL PROGRAM



The first case is nand g, are varied independently.

cantilever self

function cantilever self

Q

% cantilever beam with follower self-weight
clear
global cetal0 pl b h n EO

format long

b=input ('Width (b) ');

h=input ('Height (h) ");

n=input ('Degree of material nonlinearity (n) ');

EO=input ('Degree of material nonlinearity (EO0) '");
cetaO=input ('End rotation ');

v(l)=input ('Distributed load (w) '");

pl=input ('Plot configuration shapes (yes (1), no (0))= ");
P=v(1);

lim=input ('Limitation= '");

inc=input ('Increment= ') ;
fid=fopen ('Output follower generalized Ludwick.txt', 'wt');

fprintf (fid, 'Output of follower self-weight cantilever beam obeying
generalized Ludwick\n");

fprintf (fid, 'cetal w-\n');
i=0;
dv=0.0001;

while (ceta0<lim)
vO=[v(1)];

options=optimset (optimset ('fsolve'), '"MaxFunEvals', 400, 'TolFun',le-
15, '"TolX',1.0e-15);

[v fvall=fsolve ('score canfollower',v0,options)
test=max (abs (fval));

while (test>1.0e-8&&1<25)
i=i+1;
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v(l)=v(l)+dv;
v0=[v(1)];

[v fval]l=fsolve ('score canfollower',v0,options)
end

fprintf (£id, '$12.9f %12.9f
$12.9f\n',cetal,v(l),test);

cetal=cetal+inc

end

fclose (fid)
end

goveqgs_follower_ self

function dydx=govegs follower self (x,y)
global w b h n EO
dydx=zeros (6,1);

A=(((abs(y(3)))*h)/2)* (n+1)* (((((abs(y(3)))*h)/2)+E0) " (1/n))*h;
Al=((abs(y(3)))"2)* ((2*n)+1);

B=n*EQ* (((((abs(y(3))*h))/2)+E0) " (1/n)) *h;
Bl=((abs(y(3)))"2)*((2*n)+1);

C=n* (((((abs(y(3)))*h)/2)+E0) " ((n+1)/n))*h;
Cl=((abs(y(3)))"2)*((2*n)+1);

D=4* (n"2) *EO* (((((abs(y(3)))*h)/2)+E0) " ((n+l)/n));
Dl=((abs(y(3)))"3)* ((2*n)+1)* (n+l);

E=4* (n"2) * (E0" ((2*n+1) /n)) ;

El=((abs(y(3)))"3)* ((2*n)+1)* (n+l);

Io=(b* (h"3))/12;

Ink=b* ((A/Al)-(B/B1)-(C/Cl)+(D/D1)-(E/E1l));
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dydx (1)=w*sin (y (4)); % Horizontal force (H)

dydx (2)=w*cos (y(4)) ; % Normal force (V)

dydx (3)=(((-y(2)*cos(y(4)))-(y(1)*sin(y(4))))*Io)/Ink; % Curvature
dydx (4) =y (3); % Ceta

dydx (5)=cos (y (4)); s X

dydx (6)=sin(y (4)); Y

end

score_canfollower

function r=score canfollower (v)
global cetal0 w pl b h n EO

r=zeros (1,1);

w=v(1l);

curv=1.0e-5;

odeoptions=odeset ('RelTol',1.0e-5, '"AbsTol',1.0e-5);

[x y]=o0ded5 ('govegs follower self', [0 1], [0 O curv cetal 0
0], odeoptions);

lastrow=size(y,1);
if (pl==1)
figure (1)
hold on;
title ('Equilibrium shape'):;
plot(y(:,5),y(:,6));
axis on;
axis equal;

grid on;

end
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r(l)=y(lastrow,4);

end

The second case is nand &, are related to each other.

For n<1l
cantilever self

function cantilever self

[}

% cantilever beam with follower self-weight
clear
global cetal0 pl b h n EO

format long

b=input ('Width (b) ');

h=input ('Height (h) ");

n=input ('Degree of material nonlinearity (n) ');
EO=(n/2)"(n/(1-n)); % Good for n<l1l

cetaO=input ('End rotation ');

v(l)=input ('Distributed load (w) ');

pl=input ('Plot configuration shapes (yes (1), no (0))= ");
P=v(1);

lim=input ('Limitation= ");

inc=input ('Increment= ");
fid=fopen ('Output follower generalized Ludwick.txt',6 'wt');

fprintf (£id, 'Output of follower self-weight cantilever beam obeying
generalized Ludwick\n');

fprintf (fid, 'cetal w \n');
i=0;
dv=0.0001;

while (ceta0<lim)
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options=optimset (optimset ('fsolve'), 'MaxFunEvals',400, 'TolFun', le-
15, 'TolX'",1.0e-15);

[v fval]=fsolve ('score canfollower',v0,options)
test=max (abs (fval)) ;

while (test>1.0e-8&&i<25)
i=i+1;

v(l)=v(l)+dv;

[v fvall=fsolve('score canfollower',v0,options)
end

fprintf (£fid, '$12.9f $12.9f
%12.9f\n',cetal,v(l),test);

cetal=cetal+inc

end

fclose (fid)
end

goveqs_follower_ self

function dydx=govegs follower self (x,y)
global w b h n EO
dydx=zeros (6,1) ;

A=(((abs(y(3)))*h)/2)* (n+1)* (((((abs(y(3)))*h)/2)+E0) " (1/n))*h;
Al=((abs(y(3)))"2)*((2*n)+1);

B=n*EO0* (((((abs(y(3))*h))/2)+E0)"~(1/n)) *h;
Bl=((abs(y(3)))"2)*((2*n)+1);

C=n* (((((abs(y(3)))*h)/2)+E0) " ((n+1)/n)) *h;
Cl=((abs(y(3)))"2)*((2*n)+1);

D=4* (n"2) *EO* (((((abs(y(3)))*h)/2)+E0) ~ ((n+l)/n));
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Dl=((abs(y(3)))"3)*((2*n)+1)* (n+l);

E=4*(n"2)* (E0O” ((2*n+1) /n));

El=((abs(y(3)))"3)* ((2*n)+1)* (n+l);

TIo=(b* (h"3))/12;

Ink=b* ((A/Al)-(B/B1)-(C/Cl)+(D/D1)-(E/E1));

o

dydx (1)=w*sin(y (4)); Horizontal force (H)

dydx (2)=w*cos (y(4));

a0

Normal force (V)

dydx (3)=(((-y(2)*cos(y(4)))—-(y(1l)*sin(y(4))))*Io)/Ink; % Curvature
dydx (4) =y (3); % Ceta

dydx (5)=cos (y (4)) ; % X

dydx (6)=sin(y (4)); 5 Y

end

score_canfollower

function r=score canfollower (v)
global cetal0 w pl b h n EO

r=zeros(1l,1);

w=v(1l);

curv=1.0e-5;

odeoptions=odeset ('RelTol',1.0e-5, 'AbsTol"',1.0e-5);

[x y]=o0oded5 ('govegs follower self',[0 1],[0 0 curv cetal 0
0],odeoptions);

lastrow=size(y,1);
if (pl==1)
figure (1)
hold on;

title ('Equilibrium shape');

plot(y(:,5),y(:,06));
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axis on;
axis equal;
grid on;

end

r(l)=y(lastrow,4);

end

For n>1
cantilever self

function cantilever self
% cantilever beam with follower self-weight
clear

global cetal0 pl b h n EO

format long

b=input ('Width (b) ');

h=input ('Height (h) ');

n=input ('Degree of material nonlinearity (n) ');

EO=(2n) "~ (n/ (1-n)); % Good for n>1

cetaO=input ('End rotation ');

v (l)=input ('Distributed load (w) ');

pl=input ('Plot configuration shapes (yes (1), no (0))= ");
P=v(1);

lim=input ('Limitation= ");

inc=input ('Increment= ");

fid=fopen('Output follower generalized Ludwick.txt',6 'wt');

fprintf (fid, 'Output of follower self-weight cantilever beam obeying
generalized Ludwick\n');
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fprintf (fid, 'cetal w \n'");
i=0;
dv=0.0001;

while (cetaO0<lim)
vO=[v(1)];

options=optimset (optimset ('fsolve'), '"MaxFunEvals',400, 'TolFun',le-
15, 'TolX',1.0e-15);

[v fval]l=fsolve ('score canfollower',v0,options)
test=max (abs (fval));

while (test>1.0e-8&&1<25)
i=i+1;

v(l)=v(1l)+dv;

[v fval]=fsolve ('score canfollower',v0,options)
end

fprintf (fid, '$12.9f %$12.9f
$12.9f\n',cetal,v(l),test);

cetal=cetal+inc

end

fclose (fid)
end

goveqgs_follower_self

function dydx=govegs follower self (x,y)
global w b h n EO
dydx=zeros (6,1);

A=(((abs(y(3)))*h)/2)* (n+1)* (((((abs(y(3)))*h)/2)+E0) " (1/n)) *h;
Al=((abs(y(3)))"2)* ((2*n)+1);

B=n*EO0* (((((abs(y(3))*h))/2)+E0)"(1/n)) *h;
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Bl=((abs(y(3)))"2)* ((2*n)+1);

C=n* (((((abs(y(3)))*h)/2)+E0) " ((n+1l)/n)) *h;
Cl=((abs(y(3)))"2)* ((2*n)+1);

D=4* (n"2) *EO* (((((abs(y(3)))*h)/2)+E0) ~ ((n+l)/n));
D1=((abs(y(3)))"3)*((2*n)+1) * (nt+l);

E=4* (n"2) * (E0" ((2*n+1) /n)) ;
El=((abs(y(3)))"3)* ((2*n)+1) * (n+1);

Io=(b* (h"3))/12;

Ink=b* ((A/Al)-(B/B1l)-(C/Cl)+(D/D1)-(E/E1l));

dydx (1)=w*sin(y(4)); % Horizontal force (H)
dydx (2)=w*cos (y (4)); % Normal force (V)

dydx (3)=(((-y(2)*cos(y(4)))=(y(1)*sin(y(4))))*Io)/Ink; % Curvature

dydx (4) =y (3) ; % Ceta
dydx (5)=cos (y (4)) ; % x
dydx (6)=sin(y(4)); Yy
end

score_canfollower

function r=score canfollower (v)
global cetal0 w pl b h n EO

r=zeros(1,1);

w=v (1) ;

curv=1.0e-5;

odeoptions=odeset ('RelTol',1.0e-5, 'AbsTol"',1.0e-5);

[x y]l=oded5('govegs follower self',[0 1],[0 O curv cetal O
0],odeoptions);

lastrow=size(y,1);
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if (pl==1)
figure (1)
hold on;

title ('Equilibrium shape');
plot(y(:,5),y(:,6));

axis on;

axis equal;

grid on;

end

r(l)=y(lastrow,4);

end
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APPENDIX E
EQUILIBRIUM EQUATIONS OF BEAM SEGMENT



wds

» X

Figure E.1 Free-body diagram of an infinitesimal element of the beam

dx

IX:

Figure E.2 Geometric relationship of beam element
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Summation of forces in Y direction
Y F=0 T+

(V+dV)-V —(wds)cos@=0

d—V—WC056?=O
ds

v =Wwcosé (E.1)
ds

Summation of forces in X direction
YFE=0 >+

(H+dH)—H —(wds)sing=0

OI—H—Wsin =0

ds
OI—szsinﬁ (E.2)
ds

Taking moment about point 0
ZMO =0 ‘|f>

—(M+dM)+M -Vdx—Hdy =0

—dM -Vdx-Hdy =0 ﬂzsine, %zcose
ds ds
—d—M—V cos@—-Hsing=0
ds
dM )
d—:—(V cos@+Hsino) (E.3)
S
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APPENDIX F

THE INNER BENDING MOMENT-CURVATURE RELATIONSHIP
OF GENERALIZED LUDWICK MATERIAL



As well-known the inner bending moment acting at any cross-section of the
beam can be expressed with normal stress o (Fig 3.6) can be written as

M :—j oydA (F.1)
A
4 1
E=-yp =-y—=-kYy (F.2)
yo,
G=—E[(|8|+80)l/n —8;’”} (F.3)

Let dA=hdy be the infinitesimal cross-sectional area of the beam. Furthermore,
employing the expression of normal strain-curvature £ = —xy ; hence

M :J.E[(|g|+go)un —gé’”}ydA (F.4)

M = 2bE joh’z[(|;<y| re)" —eé’”} ydy  dA=bdy (F.5)

After some works, the inner bending moment for generalized Ludwick’s
material model can illustrated as below.

n+1 2n+1

1
_ “n_ n 2.n

M =208 | np2|| MNED=2060p |0 | oA nen  Meg ) g
2(n+1)(2n+1)p [{ 2p (n+1)(2n+1) 8np

where the curvature x = i
Yo,

Finally, the inner bending moment for generalized Ludwick’s material model
can be written as,

nTﬂ —2n? 2 % 112
zchzn(n+1) 2%, |, : 2n’e, _g()Eh_ F7)
xk*(2n+1)(n+1) | «*(2n+1)(n+1)

M=Eb (Kh+goj
2 4
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APPENDIX G

MOMENT DIFFERENTIATION OF GENERALIZED LUDWICK
MATERIAL



n+l 2n+l
n{xhn(n +1)—2n2(90}r 2n’g, " > h?

K2(2n+1)(n+1) K2(2n+1)(n+1)_‘96]Z (G.1)

M=Eb (/cg+goj

By differentiating the above equation once with respect to the arc length s the
result gives:

2n+1

el o2 2, o 12
Let X :(KE+8OJ n Khzn(n+1) 2n’g, R 2n°g, ' 5 :So”h—
2 x*(2n+1)(n+1) x*(2n+1)(n+1)
dM _dM dr
ds  dx ds
(e ho Y h h o Y
K| n n n
dM (zj(n+l)(lc2+goj h ngo(lc2+goj h n(zc2+goj h
™M Ep _ _
ds k% (2n+1) k% (2n+1) k% (2n+1)
NI |
4n’s, (K+goj : ,. 2
2 kg, dic 62)

(1) (n+l) & (2n+1)(n+1) | ds

Finally, the differentiation of the inner bending moment can be written as below.

dM dx
S =l (G.3)
where
r 1 1 nsl
| (thj(n+1)(1(2+80)nh ngo(lc2+gojnh H(K‘2+6‘O]nh
" k% (2n+1) x*(2n+1) k*(2n+1)
nil 7
4n’s, (K;-l—é‘ojn ante nd
- 0 (G.4)

x°(2n+1)(n+1) «*(2n+1)(n+1)
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APPENDIX H
NUMERICAL RESULTS



Table H.1 Numerical results for nonlinear elastic material: &, =0.001 and n varying

from 0.50,0.75..2.00 with b =0.1mandh =0.1m

W
% ¢, =0.001
(rad)
n=050 n=075 n=100 n=150 n=175 n=200
0.0 0.000000 0.000000 0.000000  0.000000 0.000000 0.000000
0.2 0.015000 0.290368 1.201348 4.010447 6.341726  5.790828
0.4 0.054370 0.704797 2.410405  7.542403 9.398551 8.154448
0.6 0.118527 1.197721 3.635229 10.157444 12.348522 10.346395
0.8 0.208369 1.756490 4.884284 12.555389 14.947794 18.833779
1.0 0.325200 2.376914 6.166776 14.833826 18.435452 21.566774
1.2 0.470793 3.059041 7.492988 17.053081 20.975275 24.149175
1.4 0.647440 3.805827 8.874687 19.257990 23.378385 26.657428
1.6 0.858057 4,622715 10.325675 21.487059 25.773683 29.149182
1.8 1.106321 5.517661 11.862520 23.777576 28.235506 31.676120
2.0 1.396849 6.501467 13.505593 26.169533 30.782183 34.290765
2.2 1.735451 7.588447 15.280556 28.709592 33.477402 37.052364
2.4 2.129486 8.797498 17.220624 31.456335 36.388528 40.034934
2.6 2.588367 10.153790 19.370067 34.393770 39.608679 43.334521
2.8 3.124305  11.691354  21.790003 36.973874 43.149206 44.765846
3.0 3.753406  13.457417 24568444 41.912184 47.564648 51.584895
3.14 4.260574  14.865093 26.648829 44.401270 50.681183 55.351383
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Table H.2 Numerical results for nonlinear elastic material: &, =0.002 and n varying

from 0.50,0.75..2.00 with b =0.1mandh =0.1m

W

% &, =0.002

(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00

0.0 0.000000  0.000000  0.000000 0.000000 0.000000 0.000000
0.2 0.017791  0.309401  1.201348 4.020639 5.669596  7.202317
0.4 0.060207 0.734115 2410405 7.026639 9.450766 11.437753
0.6 0.127510 1.234914 3.635229  9.624466 12.496705 14.814591
0.8 0.220584 1.800344 4.884284 11.773046 15.216440 17.762188
1.0 0.340752 2.426721 6.166776 14.379966 17.749692 20.479455
1.2 0.489798 3.114370 7.492088 16.583404 20.179189 22.895321
1.4 0.670044 3.866431 8.874687 18.774095 22.596362 25.508308
1.6  0.884437  4.688489  10.325675 20.989692 23.813440 27.281550
1.8 1.136695 5.588611  11.862520 23.266849 27.366717 30.486113
20 1431481  6.577714  13.505593 25.644934 29.902766 33.078881
2.2 1.774669 7.670270  15.280556 28.169941 32.506459 35.814367
24 2173696  8.885290  17.220624 30.899580 35.473010 38.816890
26 2638076 10.248064 19.370067 33.910809 37.666375 42.061798
2.8 3.180153  11.792989 21.790003 37.313179 40.639125 45.755448
3.0 3.816234  13.567821 24.568444 40.707504 46.432039 50.163214
3.14 4328927 14.982666 26.498360 42.498190 49.672377 53.851176
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Table H.3 Numerical results for nonlinear elastic material: &, =0.003 and n varying

from 0.50,0.75..2.00 with b =0.1mandh =0.1m

W

% &, =0.003

(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00

0.0 0.000000  0.000000  0.000000 0.000000 0.000000 0.000000
0.2 0.020488  0.325339  1.201348 4.022923 3.611590 3.959431
0.4 0.065868 0.759449 2410405 6.882631 8.974675 10.757654
0.6 0.136255 1.267601 3.635229  9.316591 11.965383 14.078255
0.8 0.232514 1.839312 4.884284 11.785340 14.664244 16.989371
1.0 0.355972 2.471325 6.166776 14.032773 17.174258 19.752742
1.2 0.508432 3.164217 7.492088 15.998408 19.584316 22.199087
1.4 0.692239 3.921296 8.804081 18.129202 21.591380 24.768603
1.6 0.910373 4748273  10.325672 18.847533 24.213592 27.087118
1.8 1.166588 5.653337  11.388147 22.867709 26.708178 29.454896
2.0 1.465596 6.647517  13.504880 25.233443 29.252293 32.180448
2.2 1.813331 7.745371  14.913749 27.745234 31.769349 34.613222
24 2.217306 8.966077  17.220860 30.460081 34.428948 37.673361
2.6 2.687138 10.335144 19.132572 33.453904 37.814943 40.242660
2.8 3.235307  11.887141 21.406614 36.421550 41.300311 43.874641
3.0 3.878308 13.670188 24.348142 39.660934 44.788456 49.081673
3.14 4396479  15.091769 26.795345 43.594273 46.092712 52.726481
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Table H.4 Numerical results for nonlinear elastic material: &, =0.004 and n varying

from 0.50,0.75..2.00 with b =0.1mandh =0.1m

W

% &, =0.004

(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00

0.0 0.000000  0.000000  0.000000 0.000000 0.000000 0.000000
0.2 0.023125 0.339355  1.201348  3.324448 0.062500 5.949265
0.4 0.068399 0.782206 2410405 6.235538 0.062509  9.065929
0.6 0.144825 1.297311 3.635229  7.604717 0.062495 12.401670
0.8 0.244224 1.875019 4.884284 11517886 3.062505 14.544262
1.0 0.370934 2.512451 6.166776 13.634229 16.572473 19.049177
1.2 0.526774 3.210407 7.492088 15.916156 17.649450 21.327546
1.4 0.714109 3.972343 8.804099 17.310845 20.603599 23.515944
1.6  0.935951  4.804089  10.325621 19.165196 20.603721 26.293839
1.8 1.196090 5.713935  11.234824 22.516161 21.603729 28.581260
2.0 1.499287 6.713012  13.238082 23.391670 24.096985 31.415408
2.2 1.851533 7.815989  15.130891 24.828234 28.928718 34.140064
24 2.260420 9.042174  16.861645 30.160362 31.730973 36.644558
2.6 2.735664  10.417245 19.275391 32.075747 33.518426 40.264548
2.8 3.289878  11.976005 21.747189 32.744342 40.773986 43.821888
3.0 3.939748  13.766917  24.120582 34.573231 43.242870 48.338019
3.14 4463356  15.194941 26.153585 37.136708 45.602538 51.775780
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Table H.5 Numerical results for nonlinear elastic material: &, =0.005 and n varying

from 0.50,0.75..2.00 with b =0.1mandh =0.1m

W

% &, =0.005

(rad)
n=0.50 n=0.75 n=1.00 n=1.50 n=175 n=2.00

0.0 0.000000  0.000000  0.000000 0.000000 0.000000 0.000000
0.2 0.025722 0.352008 1.201348  3.658263 4.216660 4.240152
0.4 0.076852 0.803078 2410405 5.962256 7.323723 9.786189
0.6 0.153259 1.324809 3.635229  8.972874 10.574056 10.904268
0.8 0.255761 1.908274 4.884284 11.170287 13.809668 15.366486
1.0 0.385688 2.550932 6.166776 13.165342 16.319354 18.278525
1.2 0.544874 3.253784 7.492088 15.655592 18.652920 20.352915
1.4 0.735707 4.020427 8.874687 17.576835 20.891037 23.357759
1.6 0.961227 4.856803  10.325675 19.997745 23.174255 25.156561
1.8 1.225261 5.771293  11.862520 22.233420 25.739202 26.847226
20 1532617  6.775127  13.505593 24.574980 27.996658 30.093181
2.2 1.889344 7.883076  15.280556 26.594842 30.813140 33.129506
24 2.303109 9.114574  17.220624 29.734910 33.222446 35.976553
2.6 2.783728  10.495462 19.370067 32.663465 36.587291 39.071912
2.8 3.343949  12.060765 21.790003 35.824064 39.358905 43.182714
3.0 4.000641  13.859271 24.290324 39.208893 42.493061 47.439855
3.14 4529649  15.293505 26.459706 41.820581 43.633979 49.839885
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Table H.6 Numerical results for nonlinear elastic material: &, =0.001 and n varying
from 0.50,0.75..2.00 with b =0.02mandh =0.02m

W
% ¢, =0.001
(rad)
n=050 n=075 n=100 n=150 n=175  n=2.00
0.0 0.000000  0.000000 0.000000  0.000000 0.000000  0.000000
0.2 0.005144  0.205856 1.201348 6.251503 0.062520  0.827898
0.4 0.015370 0.469643 2.410405 10.672172 0.062526 12.328170
0.6 0.030652 0.774753 3.635229 15.163382 5.562525 14.328154
0.8 0.051152 1.115965 4884284 19.019776 6.562518 18.328155
1.0 0.077138 1.491794 6.166776 22.903679 18.986234 21.330686
1.2 0.108975 1.902825 7.492988 26.319076 25.221127 46.895326
1.4 0.147141 2.351162 8.874687 27.328745 28.731695 52.054761
1.6 0.192245 2.840279  10.325675 29.976863 29.115918 57.404022
1.8 0.245052 3.375081  11.862520 31.324495 33.596467 61.498239
2.0 0.306523  3.962137  13.505593 37.343051 38.179301 68.311802
2.2 0.377869 4610085  15.280556 44.829100 43.179302 72.451607
2.4 0.460622 5330284  17.220624 50.364028 54.837547 81.344976
2.6 0.556746  6.137793 19.370067 54.879842 73.489961 85.581895
2.8 0.668790 7.053178 21.533413 60.456690 78.647711 89.049600
3.0 0.800128 8.104950 24.426660 62.901893 81.148896 98.532986
3.14 0.905930 8.943696  25.949330 63.930677 92.635957 103.878540
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Abstract

This paper presents the large deflection behavior of the
cantilever beam subjected to follower distributed load where
material of the cantilever beam obeys the generalized
Ludwick’s constitutive law. The cross-section of the prismatic
beam is of rectangular. The cantilever beam is subjected to
follower distributed load. Moreover, the beam is well deflected
so that the large deflection theory of the beam should be
taken into account. The stress-strain relationship of such
materials is presented by generalized Ludwick’s constitutive
law. To derive the set of governing differential equations,
equilibrium equations, moment-curvature relation obeying the
generalized Ludwick’s material model and nonlinear geometric
relations have been considered. Up to this point, a set of
strongly nonlinear simultaneous first-order differential equations
with boundary conditions is established and numerically solved
by using the shooting method accompanying with the seventh
order Runge-Kutta integration technique. Furthermore, some
numerical results are carried out and discussed highlighting the
significant influences of the material nonlinearity parameters

Nand & on the equilibrium configurations and the equilibrium

paths.

Keywords: large deflection, cantilever beam, follower force,

generalized Ludwick’s constitutive law, nonlinear elastic
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1. Introduction

In recent years, with the development of technology,
increasing demands for optimum or minimum-weight designed
structural components makes the slender structures become of
importance. To explore this kind of structures, the large
deflection theory is necessary. Especially, developments in
mechanical engineering, electronic engineering, aerospace
engineering, robotics and manufacturing, etc. Furthermore,
cantilever beam can be applied to a variety of applications,
such as aircraft wings and helicopter blades are just some of
the mechanical and structural examples. The follower
distributed load acting on the beam can also be viewed as the
air pressure on the aircraft wings.

There have been a large number of contributions pertaining
to nonlinear analysis of structural elements, of which the
the

Contributions that are most relevant to the problem addressed

majority  considers  only geometrical  nonlinearities.

here are briefly discussed below.

Rao and Roa [1] studied large-deflection of a
cantilever beam subjected to a rotational distributed loading.
The model formulation is formulated by nonlinear differential
equation of the second order. Meanwhile, the large deflection
problem of a non-uniform spring-hinged cantilever beam under
a tip-concentrated follower force and the static analysis of the
flexible beams under a

non-uniform  cantilever

tip-
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concentrated and intermediate follower forces, respectively,
was considered by Shvartsman [2, 3]. Kocaturk et al. [4]
investigated the large deflection static analysis of a cantilever
beam subjected to a point load. The method of nonlinear
[5]

investigated the post-buckling of beam subjected to follower.

finite element is introduced. Phungpaingam et al.
The elastica theory and the shooting method are applied to
carry out the numerical results. Furthermore, the shooting
method is set up to solve the problem of the large deflection
of a cantilever beam with geometric nonlinearity [6]. While,
Chen [7] proposed an integral approach for large deflection
cantilever beams. The moment integral treatment are
formulated to get the numerical solution. Otherwise, large
deflections of a cantilever beam under an inclined end load
studied by Mutyalarao et al [8]. Nallathambi et al. [9] described
large deflection of constant curvature cantilever beam under
follower load. The fourth order Runge-Kutta method and
shooting method are proposed to get the numerical solution.
Moreover, Xiang et al. [10] researched on nonlinear analysis of
a cantilever elastic beam under non-conservative distributed
load. The numerical results are solved by using the shooting
method. Taking a look at this problem, Kim et al. [11]
employed finite element method to deal with beam stability
on an elastic foundation subjected to distributed follower
force. Vazquez-Leal, et al. [12] examined the approximations
for large deflection of a cantilever beam under a terminal
follower force and nonlinear pendulum. The homotopy
perturbation method and Laplace-Pad’e post treatment are
established to solve the problems. Otherwise, Eren [13]
investigated the large deflections in rectangular combined
loaded cantilever beams made of non-linear Ludwick type
material by means of different arc length assumptions. For
mathematical  formulation, the materials of geometric
nonlinearities are mentioned. The theory of Euler-Bernoulli is
established to compute the horizontal and vertical deflections.
Moreover, Athisakul et al. [14] applied the shooting method
employing with Runge-Kutta method to carry out the
numerical results with the problem of the effect of material
nonlinearity on large deflection of variable-arc-length beams
subjected to uniform self-weight. One more interesting work is
that Lee [15] investigated large deflection of cantilever beams
of nonlinear elastic material under a combined loading. The
shearing force formulation is set up to formulate the governing
equation to solve the problem. Butcher’s fifth order Runge-

Kutta method is employed to compute the numerical results.

What is more, Brojan et al. [16] dealt with the large deflections
of non-linearly elastic non-prismatic cantilever beams made
from materials obeying the generalized Ludwick constitutive
law. In the model formulation, the moment-curvature formula
was set up to get the the governing equations and the
boundary conditions in order to solve the problem. The similar
problems of generalized Ludwick constitutive law are post-
buckling of linearly tapered column and simply supported
column made of nonlinear elastic materials obeying the
generalized Ludwick constitutive law were studied by Saetiew
and Chucheepsakul [17, 18], respectively. The geometrical
material nonlinearities are employed to formulate the
governing equations. The shooting method is selected to carry
out the numerical results. Last but not least, Brojan et al. [19]
illustrated on static stability of nonlinearly elastic Euler’s
columns obeying the modified Ludwick’s law. Four system
states in static equilibrium are perceived as neutral, unstable,
locally stable, and globally stable state.

As described literatures above, it was remarkable that
research studies on the behavior of the large deflection
problems that are made of material nonlinearities have carry
out mostly the cantilever beams and columns. Only the small
amount of research studies handled the problem with a
slender, follower distributed load cantilever beam. Brojan et al.
[20] considered the large deflections of non-prismatic
nonlinearly elastic cantilever beams subjected to non-uniform
continuous load and a concentrated load at the free end
obeying generalized Ludwick’s constitutive law. The cantilever
beam encountered the follower loads can be found in Hartono
[21] and Rao and Rao [1]. However, in their papers, the
material model still employed the Hooke’s law. Hence, in this
paper, we aim to tackle the problem of the cantilever beam
under uniform follower distributed load in which the material
model belongs to the Generalized Ludwick model.

By perceiving the effects of geometrical and material
nonlinearities, the governing equations obtained for the large
deflection behavior are highly nonlinear. Generally, the closed-
form solutions cannot be employed in this situation. The
shooting method is then required and played a vital role to
From the the load-

obtain numerical solutions. results,

deflection curves and equilibrium shapes are highlighted.

2. Problem definition and notations

Referring to Fig. 1, OB is the undeformed configuration of a

uniform cantilever beam having length L subjected to a
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distributed load W. Under loading, the beam undergoes large
deflection and the deformed configuration of the beam is
presented by OA (Fig. 2). After deformation, the distributed
load direction is rotated by 8 compared to the original unde-
formed vertical direction. OX, OY are the rectangular Cartesian
co-ordinate system. S and @ are the intrinsic co-ordinate system
followed in the present study. It is required to find out the tip
angle & , the tip deflections of the cantilever beam X, Y; and

the deformed shape for any given distributed load.

Prior to the mathematical formulation, the basic assump-
tions have been. They are:

(1) Material of the beam is made of incompressible, homo-
geneous, isotropic obeying the generalized Ludwick’s
constitutive law.

(2) Bernoulli hypothesis is adapted to this study.

(3) Shear deformation is negligible because the beam is

considered as a slender member.

3. Mathematical formulation and solution

The mathematical formulation derives from considering
constitutive relationships, geometric relationships and equili-
brium of the beam. Hence a set of highly nonlinear differential
equations is obtained to describe the elastica of deformed
beam subjected to follower distributed load, as shown in Fig.

2. The solution procedure is also treated in this section.

Yll

w(s)

B
»X
\—UNDEFORMED CONFIGURATION

|
L

UL

Fig.1. A cantilever beam subjected to the follower distributed load

with undeformed configuration

1
L !
—UNDEFORMED CONFIGURATION

e ]‘.'.”ffi__ |

DEFORMED CONFIGURATION / -

1 >

- Xo A X
AT LOCATION A | s=0
AT LOCATION O, s=L

Fig.2. A cantilever beam subjected to the follower distributed load

with deformed configuration

Fig.3. Free-body diagram of an infinitesimal element of the beam

3.1 Constitutive relationships

A well-known Ludwick-type nonlinear elastic constitutive
formula is one of the generalizations of the Hooke’s law to
describe the nonlinear elastic behavior. Its nonlinear stress—

strain relationship is a power function as shown below.

1/
E|e| " 120,
o= 1/n W
—Elé] t£<0.
where o and g are  stress and strain  (for tensile & = 0and

compressive £ < 0), respectively; E represents material cons-
tant and Nis dimensionless parameter indicating the degree of
material nonlinearity.

It is important to note that Eg. (1) has one major
shortcoming, the stress gradient goes to infinity forn>1, and

goes to zero for N <1lwhen the strain value reaches zero, Fig. 3.

o 167

0.8+

06+

0.4 .
Hooke's law

ood L2l Ludwick’s law

Generalized Ludwick’s law

0.0 0.2 04 0.8 0.8 1.0 1.2 1.4 1.6
&

Fig.4. Stress—strain relationships in tensile domain

By eliminating this problem, since it is not possible to
represent the actual behavior of material, Jung and Kang [22]
suggested a modified (generalized) form of the Ludwick’s
constitutive law, mathematically described by the following

expression,

E{(|g|+go)lm—8oj/”} , €20,
7= 1/n @
—E{(|g|+50) —80]/”} ; £<0.
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in which an additional parameter &yis supplemented to

prevent those shortcomings.

The generalized Ludwick’s constitutive law is developed by
using three parameters: E ,Nand &y. These parameters can be
used for approximating the stress-strain curves of such
materials obtained by experiments. By virtue of Eq. (2), setting

& =0leads to Ludwick-type nonlinear elastic constitutive

law; consequently, the Hooke’s law is obtained by setting

n=1.

3.2 Governing equations

The elastica theory is used to obtain the set of governing
equations of the aforementioned problem. Applying the
equilibrium equations, moment-curvature, and the geometric
relations to the infinitesimal element ds of the deformed

beam Fig.3, the set of differential equations can be written as:

I _ cos 0, @)

ds
y .

2 —sing, @

ds

N _ \weos 0, ®)
ds

9H _ sin 0, (6)
ds

d—Mz—(Vcosé?+Hsin0). )

s

As well-known the inner bending moment acting at any
cross-section of the beam can be expressed with normal
stress o :

M = — j oydA (&)
A

where ¢ is related to the corresponding strain in tension and
compression, see (2). Let dA =bdy be the infinitesimal area of

the cross-section. Furthermore, using the normal strain-

displacement expression &€ = —KY ; hence
_ yn _ g un
M=|E (|£|+50) —& |ydA
A

By considering the symmetry of the cross-section and after
some manipulation, the inner bending moment-curvature
relationship of a uniform cross-section rectangular beam made
up from nonlinear elastic materials obeying the generalized
Ludwick’s constitutive law can be written as follows:

n+1
"0 | khn(n+1)-2n’g,

M =Eb (KE-‘:-E,‘O)
2

&% (2n+1)(n+1)
2n+1 1
2 1.9
k% (2n+1)(n+1) 4

As mentioned previously and setting &5 =Ointo Eq. (10),

the following expression for the inner bending moment-

curvature relationship of Ludwick-type nonlinear elastic
material can be achieved.
1
M =El, (x)n, (11a)
where
n+l
1 n
L=[=]" bh(2"Y), (11b)
2 2n+1

Similarly, by further settingn =1into Eq. (11), the simple
expression for the inner bending moment-curvature relation-
ship of linearly (Hookean) elastic can be obtained.

M = Elyx,

3
in which lg = Eis the moment of inertia of the rectangular

(12)

cross-section.
By differentiating Eq. (10) once with respect to the arc
length S the result gives:

o)

N8
ds K*(2n+1)
n n+
h h
_bné‘o[l(2+£0)n h_bn(lcz-i-goj " h
x*(2n+1) x*(2n+1)
n+l
2, (N " 041
b4n ‘90[’(2""90) ) banZe, " d »
2 (2n+1)(n+1)  «(2n+1)(n+1) | ds’
dM dx
E— Elnxg, (146)
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where

L (thj(n +1)(K;+€Ojn h

x*(2n+1)

n+l

1
_ngo(ic2+gojnh n(/c2+goj " h

(2n+1) &2 (2n+1)

n+1

4n’s, [K'; + 80] !

©*(2n+1)(n+1)

2n+1
3 4n’g, N
2 (2n+1)(n+1) |

(14b)

By substituting Eq. (7) into Eq. (14), this can be achieved.
dc  —(Vcos@+Hsing)

. (15)
ds El,.
do
—= (16)
ds "

For the sake of the generality, the non-dimensional terms

are introduced as follows.

yzf, 7:1, §:§, K =xL,
L L L
wl® - VI — b - h
W=_1V=—’ b:—’ h:—, f (17a't)
I Iy L L
P A 7
0:_3’ [ =, M:_L' Hzi_
L L El, El,

In view of the foregoing non-dimensional terms, Eq. (14)
can be rewritten in non-dimensional form as follows:
dM I, di
— =, (18)
ds I, dS

where

o ]
_h n
4n’s, [K2+50] 4n2502r:‘+1
+ — , (19a)
*(2n+1)(n+1)  &°(2n+1)(n+1)
_ i _
o = : b
T (19b)

3.3 Method of solution

Since a set of governing equations is a complicated
nonlinear differential equation, the numerical solutions are
required for describing the deformation behavior of the
cantilever beam problem. The geometric relationships in Egs.
(3) and (4) can be expressed in the non-dimensional forms as,

dx

— =C0S46, (20a)
ds
d—X =siné, (20b)
ds
d—Y =WC0s4, (20c)
ds
d—'j =Wwsiné, (20d)
d—f:—(\70056'+ I—_Isine)_—o, (20e)
ds [
do _
— =K. (20f)
&
The boundary conditions are as follows:
05 =0)=6, and 6(5=1) =0, (21a)
xk(5=0)=0 and x(S=1)=0, (21b)
X(E=0)=0 and X(5 =1 =X(), (210
Y(E=0)=0 and Y(5 =1) =y(). (21d)

Equation (20a-f) with the boundary conditions in Egs. (21a-
d) forms the nonlinear two-point boundary value problem,
which can be solved by the shooting method. For a given

value ofHO , there is an unknown (W) to be evaluated from six

of first-order nonlinear differential equations (20a)-(20f) with

boundary conditions given in equations (21a)-(21d). The
solution steps are summarized below.

In order to find the solution, the shooting method is
employed to obtain the numerical solutions. The numerical
procedure can be summarized in the following steps.

(1) Specify the non-dimensional cross-section parameters
(b and ﬁ), and the material constants (Nand &y) to the pro-

blem.

(2) Assign the value of 6, and estimate W for the first
iteration.

(3) Integrate equations (20a)-(20f) fromS =0andS =1
by using the seventh-order Runge-Kutta with adaptive step
size control.
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in which the
function @ for the minimization process is

(4) Minimize the error norm objective

Minimize @ =|6(1)| (22)

W

In the computation, the desired value of @ is that less
than the prescribed tolerance (107") for the solution using the
Newton-Raphson iterative scheme.

In the equation (19a), it can be seen that the singularity
may occur K =0. To overcome this problem, the initial
curvature at the tip of the beam is set to K =1x10"instead
of zero.

In our computation, we assume that the set of material
parameters (i.e., & andN) can be related to each other.
Technically, the initial slopes of the stress-strain curves are
utilized to obtain the relationship. Hence the initial slopes of
the stress—strain curve can be achieved by differentiating
equation (2). The result obtains

n
n \1-n
&y =| — for N#1
o

where the initial slope of the stress-strain curve is defined by

(23)

aE . For the example, if the initial slopes are given by
0.5Eand2E, and the relationship between &;andn are

& = (ZH)[ﬁ] and &, = (n / 2)(ﬁ] respectively. It should be

noted that Eq. (23) not valid forn=1. ifn=1,
gywould set to be zero automatically. In our numerical

does

experiments, the initial slopes are chosen to be 0.5E and 2E ,

to show the difference between linear and nonlinear

constitutive relationships.

4. Results and discussion

To analyze the numerical computations of the large
deflections of cantilever beam obeying generalized Ludwick’s
material model subjected to follower distributed load, the
cross-sectional dimensions and length of the cantilever beam
are given by the non-dimensional geometric parameters as
follows: b =0.2m , h=0.2m.

To point out the nonlinear constitutive relationships clearly
and simply we have chosen the two following numerical
examples, the rectangular cross-section of cantilever beam is
subjected to several different follower distributed loads with
the degree of material nonlinearity n .

The first case of the cantilever beam with non-dimensional

geometric parametersh =0.2m, h =0.2m. The nonlinearity

n
material parameters to determine aren >1and &y = (2n)ﬁ .
The second case of the cantilever beam with non-

dimensional geometric parameters b =0.2m,h =0.2m. The

nonlinearity material to determine

n
n \1-
aren<1andé‘0=(z) " .

The first two tables below are illustrated the numerical

parameters

results in sequence.

The result listed in Table 1 can be interpreted that when
usingN >1, the rotation angle @y and the follower distributed
load W are both increase their values. In contrast, Table 2
demonstrated that when applyingn <1, the rotation angle 6,

successively increases with the follower distributed load W .

Table 1 Numerical results for cantilever beam made of the

generalized Ludwick-type nonlinear elastic material for case 1.

W
n

(Zg ) gy =(2n)in

n=110 | n=120 | n=1.30 | n=145 | n=1.50
020 | 1.68619 | 200236 | 211785 | 217475 | 2.18264
0.80 | 6.06606 | 691150 | 7.30042 | 7.50542 | 7.52825
1.0 | 1047533 | 11.60927 | 12.12867 | 12.27408 | 12.28291
200 | 15.42334 | 16.74968 | 17.06725 | 17.21551 | 17.38962
260 | 21.59041 | 23.07919 | 2239006 | 23.37350 | 23.52711
314 | 29.40196 | 31.10185 | 31.46138 | 31.33843 | 29.32568

Table 2 Numerical results for cantilever beam made of the

generalized Ludwick-type nonlinear elastic material for case 2.

W
n

(z(;) & =(0.5n)1-n

Nn=0.55|n=0.65|n=0.75|n=0.85|n=0.95
020 | 057700 | 0.63391 | 0.64521 | 0.70084 | 098283
0.80 | 287544 | 292139 | 300960 | 3.34930 | 4.29766
140 | 561243 | 583952 | 598951 | 659744 | 804496
200 | 9.69558 | 9.60880 | 9.77101 | 10.60975 | 12.48068
260 | 1487062 | 1471242 | 14.81659 | 1586234 | 18.15356
5.14 | 19.97827 | 2060874 | 2133293 | 2256080 | 25.34391

In addition, the nonlinearity material parameter n = 0.55
and N =1.30 are selected to show the deflection configuration
in figure 5 and 6. And their deflection configuration results
forn=0.55andnN=1.30 are displayed in Table 3 and 4,

respectively.

167



Fig.5. Equilibrium configurations of the nonlinearly cantilever
beam subjected to follower distributed load n = 0.55.

Otherwise, the nonlinearity material parametern =1.30is

chosen to demonstrate the deflection configuration.

0.0
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0.4

064

0.8

56,=16
10 ‘ ‘ ‘ ‘ ‘ ‘ ; ;

0.6 0.4 0.2 0.4 06

Fig.6. Equilibrium configurations of the nonlinearly cantilever
beam subjected to follower distributed load n =1.30 .

Table 3 Numerical results for cantilever beam made of the
generalized Ludwick-type material forn =0.55 .

n
Confauration n=0.55and &, =(0.5n)i-n
6, (rad) W
1 0.2 0.57700
2 0.4 132022
3 0.8 287544
4 12 4.52891
5 16 6.88814
6 2.0 9.69558
7 24 12.90037
8 28 17.02910
9 3.14 19.97827

Table 4 Numerical results for cantilever beam made of the
generalized Ludwick-type material forn =1.30.

n
Configuration n=130 and %o :(Zn)ﬁ
6 (rad) W
1 0.2 2.11785
2 0.4 3.95424
3 0.8 7.30042
4 1.2 10.42959
5 1.6 13.70155
6 2.0 17.06725
7 24 21.35352
8 2.8 26.01780
9 3.14 31.46138

Furthermore, the relationship of the load-displacement
curve for the nonlinearly cantilever beam between the
follower distributed load W and the rotation angle 6§ are exhi-

bited with the figure below.

W 35
304
25

204

Fig.7. Load-displacement curve for the nonlinearly cantilever

beam subjected to follower distributed load.

Fig.8. Equilibrium configurations for gy =1.20 and ¢y = 2.0
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Since the Ludwick-type constitutive law has one major
shortcoming as mentioned before, the large deflection behavior
of a cantilever beam obeying generalized Ludwick’s material
model subjected to follower distributed load is discussed in this
section. The load-displacement curves of the cantilever beam
with various material nonlinearity parameters N are plotted in
Fig. 7.

It is remarkable that a linear case N=1(Fig. 7), the well-
known load-displacement curve is monotonic and stable. As it
can be seen from the figure, the follower distributed load W
increases as the rotation angle 6 increases.

For the case of hardening material, wheren >1landn<1,
the behaviors of the cantilever beam are similar to the linear
casen=1.

Having compared the results with Rao and Rao [1], in this
of the

angle @y and the follower distributed load W are very close to

research was founded that the values rotation

those of Rao and Rao [1] while usingn =1.0 .1t is also shown in
Table 5.

Table 5 Comparison results between Rao and Rao [1] and the

presented study.

6, W

deg rad Rao and Rao [1] This research
9.54 0.1665 1.0 0.99980
19.04 0.3323 2.0 1.99978
37.75 0.6589 4.0 4.00016
55.83 0.9744 6.0 6.00041
73.02 1.2744 8.0 7.99981
89.15 1.5560 10.0 9.99972
104.12 1.8172 12.0 11.99933
130.43 2.2764 16.0 16.00006
152.09 2.6545 20.0 19.99959
169.68 2.9615 24.0 24.00033
183.86 3.2090 28.0 28.00096
195.27 3.4081 32.0 32.00189

5. Conclusions

In the presented study the large deflection behavior of the
cantilever beam subjected to follower distributed load where
material of the cantilever beam obeys the generalized
Ludwick’s constitutive law is investigated. Both geometrical and
material nonlinearities are relevant to this problem since the

material of the cantilever beam is assumed to be nonlinearly

elastic. This can be surpassed in a three-parametric generalized
Ludwick’s material model which is described and applied in this
study of large deflections of cantilever beam. Since the
governing equations were highly nonlinear differential equa-
tions, the closed-form solutions are in general impossible.
Otherwise, the cantilever beam problem has been solved
numerically by the shooting method. Several numerical
examples were selected to demonstrate the influence of the
geometry and configurations of the beam, loading conditions,
and constitutive law of the material on the deflection behavior
of the discussed cantilever beam. Load-deflection curves are
monotonic and stable.

From a practical standpoint, results obtained in this paper
illustrate some benefits of the generalized Ludwick’s model.
We have generated an exact moment-curvature formula for
materials which obey the generalized Ludwick’s law.

Last but not least, the present method can be developed
for a variety of cross-section shapes with varying longitudinal
shape subjected to follower distributed load in which more
numerical effort is needed. What is more, the recent findings
from this study will benefit the analysis and design of the
practical problems. This hands out as a benchmark for future

experimental investigations as well.
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