
LARGE DEFLECTIONS OF CANTILEVER BEAM OBEYING  

GENERALIZED LUDWICK’S MATERIAL MODEL SUBJECTED TO 

FOLLOWER DISTRIBUTED LOAD 

 

 

 

 

 

 

 

 

SOKHENG TOUCH 

 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE   

REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING          

PROGRAM IN CIVIL ENGINEERING     

FACULTY OF ENGINEERING   

RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI   

ACADEMIC YEAR 2014   

COPYRIGHT OF RAJAMANGALA UNIVERSITY   

OF TECHNOLOGY THANYABURI 



LARGE DEFLECTIONS OF CANTILEVER BEAM OBEYING  

GENERALIZED LUDWICK’S MATERIAL MODEL SUBJECTED TO 

FOLLOWER DISTRIBUTED LOAD 

 

 

 

 

 

 

 

 

SOKHENG TOUCH 

 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE   

REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING          

PROGRAM IN CIVIL ENGINEERING     

FACULTY OF ENGINEERING   

RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI   

ACADEMIC YEAR 2014   

COPYRIGHT OF RAJAMANGALA UNIVERSITY   

OF TECHNOLOGY THANYABURI 



Thesis Title 

Name-Surname 

Program 

Thesis Advisor 

Academic Year 

THESIS COMMITTEE 

Large Deflections of Cantilever Beam Obeying Generalized Ludwick' s 

Material Model Subjected to Follower Distributed Load 

Mr. Sokheng Touch 

Civil Engineering 

Mr. Boonchai Phungpaingam, Ph.D. 

2014 

··········~···~ Chairman 

(Mr.Jatuphon Tangpagasit, Ph.D.) 

.......... ~.~~~':~1J········Afh.!~ .. ~.J ............... . Committee 

(Assistant Professor Chainarong Athisakul, Ph.D.) 

································~~························ Committee 

(Ms. Meng Jing, D.Eng.) 

.................. r?.9.~().C.0.9.J ...... Nl~.fl-j-.V..QJ.O..~c\M. Committee 

(Mr. Boonchai Phungpaingam, Ph.D.) 

Approved by the Faculty of Engineering, Rajamangala University of Technology 

Thanyaburi in Partial Fulfillment of the Requirements for the Master's Degree 

......................................................................... Dean of Faculty of Engineering 

(Assistant Professor Sivakorn Angthong, Ph.D.) 

Date 17 Month August Year 2015 



(3) 

Thesis Title   Large Deflections of Cantilever Beam Obeying Generalized Ludwick’s 
Material Model Subjected to Follower Distributed Load 

Name – Surname     Mr. Sokheng Touch  
Program     Civil Engineering 
Thesis Advisor       Mr. Boonchai Phungpaingam, Ph.D.  
Academic Year      2014  

 

ABSTRACT 
 

This thesis presents the large deflection behavior of a cantilever beam subjected to follower 
distributed load where material of the cantilever beam obeys the generalized Ludwick’s constitutive 
law. The cross-section of the beam is prismatic and rectangular. The follower distributed load is 
applied in transverse direction and it always keeps the right angle to the beam axis. 

The stress-strain relationship of such materials is presented by generalized Ludwick’s 
constitutive law. To derive the set of governing differential equations, equilibrium equations, 
moment-curvature relation obeying the generalized Ludwick’s material model and nonlinear 
geometric relations have been considered. A set of highly nonlinear simultaneous first-order 
differential equations with boundary conditions is established. The shooting method is employed to 
solve the problem. Furthermore, two cases of parametric studies are considered. One is n  and 0   
are independent and the other is n  and 0 can be related to each other.  

From the results, there are many interesting features associated with the nonlinearly 
material properties of large deflections of cantilever beam subjected to follower distributed load. It is 
worth noting that follower distributed load w  increases as the rotational angle 0  increases and the 
stable equilibrium paths can be observed. Last but not least, the numerical results are compared with 
previous studies (linear material) in order to test the validity and accuracy of the present method, and 
they are in good agreement.  

 
Keywords: large deflection, cantilever beam, follower force, generalized Ludwick constitutive law,  

                    shooting method. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background and Statement of the Problems 

Nowadays, the analysis of large deflection of material nonlinearity for slender 

structures is of importance in developments in mechanical engineering, aerospace 

engineering, electronic engineering, robotics and manufacturing, etc. To deal with these 

structures, the large deflection beam theory plays a vital role to carry out the problem. In 

general, most of the structures show some degrees of nonlinearities such as geometric and 

material nonlinearities. According to this practice, structural failures may occur when 

these nonlinearities are neglected. Currently, these often happen as designers continue to 

carry out the innovation of aircraft concepts that encourage to work hard on the existing 

design components and industrial standards. Moreover, parametric studies [1], [2], [3], 

and [4] present the influence of nonlinear geometric parameters and boundary conditions 

in order to distinguish features that make it crucial.  

Cantilevers are mostly found in construction that used for overhanging 

structural elements, particularly in cantilever bridges, tower crane, cantilever retaining 

walls, and balconies, etc. It is also chosen to design the joined wing of aircrafts.  

Furthermore, cantilever beam can be applied to a variety of applications, such 

as aircraft wings, helicopter blades, Microelectromechanical systems (MEMS), and high-

rise building. There are two types of loading that may encounter to any system. One is 

the conservative load (e.g., load due to gravity) where the direction of the load is 

independent to the path of loading. The other one is the non-conservative load (e.g., 

friction force, follower force) where the direction of the load depends on the path of the 

loading. The definition of the follower loads are load paths which rotated with the 

deformation curve in the analysis of geometric nonlinearity. Some special structures may 

be loaded by follower force (e.g., air pressure under the aircraft wings, friction force) 

where its direction depends on path of deflection. Therefore, to fully anticipate the 

behaviors of a slender structure made of special material (generalized Ludwick's material) 

under the follower force, one needs to regard the influence of geometric and material 

nonlinearities inherent in the system.  

Moreover, the follower load acting on the cantilever beam can be applied to 

Micro-electro-mechanical systems (MEMS). For example, MEMS cantilever switch 

consisting of overhanging beams over a ground electrode [5]. When applying a control 

voltage between the top pole and the ground plane, cantilever beam is distorted made by 

electrostatic force. As the beam deforms, the charge redistributes along the conductor’s 

http://www.innovateus.net/innopedia/what-arch-bridge
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surface (Fig. 1.7). To further illustrate this point, some joint wings of the aircraft and the 

MEMS accelerometer related to this research are presented. 

As a consequence of this issue, researching on large deflection of the cantilever 

beam with nonlinearities materials becomes of importance. Otherwise, in this research 

topic is to apply the shooting method incorporated with the seventh-order Runge–Kutta 

method to solve the governing equations of the nonlinear problems. To investigate the 

large deflection behavior of the presented problem, the set of governing differential 

equations can be obtained from the equilibrium equations, moment–curvature relation 

obeying the generalized Ludwick’s constitutive law and nonlinear geometric relations. 

The following figures are explained some applications of cantilever beam. 

 

 

 

 

 

 

 

 

Figure 1.1  Basic box wing configuration 

 

 

 

 

 

 

 

 

 

Figure 1.2  Diamond box wing configuration 
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Figure 1.3  Joined wing configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4  Crane configuration 
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Figure 1.5  Cantilever Bridge configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6  Corbel configuration 
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 1.7  MEMS cantilever switch, (a) Image courtesy Advanced Diamond  

                    Technologies (b) Modeled geometry (www.thindiamond.com) 
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1.2  Objectives 

1.2.1  Investigate large deflection behavior of a cantilever beam subjected to 

follower distributed load made from nonlinearly materials obeying generalized 

Ludwick’s constitutive law. 

1.2.2  Study the effect of nonlinearity materials on large deflection behavior of 

the beam obeying generalized Ludwick’s constitutive law. 

 

1.3  Hypothesis 

The basic assumptions made in the formulation of the present problem studied 

are as follows: 

1.3.1  Material of the beam is made of incompressible, homogeneous, isotropic 

obeying the generalized Ludwick’s constitutive law. 

 1.3.2  Bernoulli hypothesis is adapted to this study. 

 1.3.3  Shear deformation is negligible because the beam is considered as a 

slender member. 

 

1.4  Scope of Study 

 1.4.1  Cross-section of the beam is rectangular cross-section.  

1.4.2  Material properties obey generalized Ludwick’s constitutive law. 

1.4.3  Two cases of parametric study are considered. One is n  and 0  are 

independent and the other is n  and 0  can be related to each other.   

1.4.4  Only static behavior will be considered.   

 

1.5  Conceptual Framework 

This research is to analyze the large deflection behavior of a cantilever beam 

obeying generalized Ludwick’s material model subjected to follower distributed load. 

The governing equations are derived by considering the geometrical and material 

nonlinearities. A set of highly nonlinear simultaneous first-order differential equations 

with boundary conditions is set up and numerically solved by using the shooting method 

incorporated with integration technique employing the seventh-order Runge–Kutta with 

adaptive step size scheme. 
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According to the previous mention, the framework of this study can be raised 

as the followings: 

1.5.1  Literatures review. 

1.5.2.  Mathematical model. 

1.5.3  Program codes. 

1.5.4  Analyze the results. 

1.5.5  Conclusions. 

 

1.6  Contribution to Knowledge 

The large deflection behavior of a cantilever beam obeying generalized 

Ludwick’s constitutive law subjected to follower distributed load can be applied to a 

variety of applications. For example, aerospace structures, especially, joined-wing 

aircraft is an interesting topic to many researchers. According to related works, several of 

them [6], [7], [8], [9], and [10] described the large deflection of a cantilever beam of 

linear and nonlinear materials subjected to conservative load. While, there is a limited 

amount of research conducting the cantilever beam subjected to follower distributed load 

where the material property can be described by the generalized Ludwick’s constitutive 

law. Depending on the lack of research on the problem of generalized Ludwick material 

under the follower distributed load. Therefore, this research could be a benchmark for the 

other investigations.  

The large deflection of the cantilever beam made from the generalized 

Ludwick’s material under the follower distributed load is studied. Moreover, the 

mathematical model illustrated the method for carrying out the problem concerning the 

material and geometric nonlinearities. The stress–strain relationship played an important 

role to solve the problem of nonlinearly materials such as Polymer, Alloy, Acetal plastic, 

and Glass fiber [11]. Hence in this research, the study in effects of material nonlinearity 

becomes more important and interesting research topic. Some contributions are listed as 

the following. 

1.6.1  Realize the behavior of a cantilever beam subjected to follower distributed 

load made from nonlinearly materials obeying generalized Ludwick’s constitutive law. 

1.6.2  Know about the effects of the material nonlinearity ( n  and 0 ) which 

influence on the behavior of the cantilever beam. 

1.6.3  Benchmark for the other investigators. 



 

CHAPTER 2 

REVIEW OF THE LITERATURE 

 

2.1  General 

Slender structural elements, such as beams and columns, usually found in the 

parts of the structures. These elements may have a deformation with large deflections but 

small strains. That is why the analysis of geometrical nonlinearities must be established 

to carry out the problem in this research study. The analysis of geometrical and material 

nonlinearities thus often goes with some engineering applications such as marine 

risers/pipes, marine cables, car tires, and aerospace structures, etc. 

In order to solve the large deflection problem, the Elastica theory is generally 

utilized. The Elastica is the equilibrium shape (large displacement) based on Euler’s 

theory. Thus in this research the Euler-Bernoulli beam theory is selected to deal with the 

problem of large deflection of a cantilever beam. 

In the Euler-Bernoulli beam theory that is presented here, the exact curvature 

relation can be expressed by  

2

2

3
2 2

1
.

1

d y
d dx

ds
dy

dx





  

  
  
   

    (2.1) 

When the slope 
dy

dx
 is considered to be small, the curvature expression becomes 

2

2

1
.

d y M

dx EI
        (2.2) 

Hence the equation (2.2) can be applied to analyze the deflection of the beam-

column in the case of the small deflection. However, this theory is supposed to give good 

results for small deflections of a beam.  

In some cases, large deflections can be occurred when the material properties 

are in elastic material. In this case, the equation (2.2) cannot be employed to solve the 

large deflection problem. To analyze large deflection, the exact curvature relation 

appeared in equation (2.1) is chosen to handle the problem. Moreover, to deal with the 

nonlinear differential equations, some methods are introduced to solve the problem such 

http://en.wikipedia.org/wiki/Beam_%28structure%29
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as the elliptic integrals method, and the shooting method incorporated with Runge-Kutta, 

etc.  

As revealed in equation (2.1), it can be seen that tan
dy

dx
 . In case of 1  

(small deflection), then we can get tan  . After making a comparison between large 

and small deflection with the relationship between 2  and  
2

tan  , the following graph 

(Fig. 2.1) is chosen to describe in order to give the information when the large deflection 

equation should be utilized. Furthermore, it can be concluded that when the differences 

between 2  and  
2

tan  is larger than 1%, the large deflection behavior is initially 

presented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Relationships between 2  and  
2

tan  

 

Nowadays nonlinear elastic materials are applied to many nonlinear analysis of 

structural elements such as Ludwick’s material, generalized Ludwick’s material, etc. 

Furthermore, the purpose of this research is to study the effects of the degree of material 

nonlinearity parameters 0 andn on the large deflection behavior of a cantilever beam 

obeying generalized Ludwick’s material model subjected to a follower distributed load. 

The Euler-Bernoulli beam theory and the inner bending moment–curvature relationship 

are employed to acquire the governing equations. The shooting method and seventh order 
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Runge–Kutta method are employed to get the numerical solution of the large deflection 

problem of a cantilever beam.     

Generally, most of the structures in civil engineering are behaved in linear 

elastic behavior due to the serviceability purpose. Aside from these, nonlinear elastic 

behavior always occurs in slender structures, especially found in aerospace applications 

(e.g., joint-wing of the aircraft affected by wind propulsion like cantilever beams). The 

modeling and the computational process are complicated. Thus the analysis of 

geometrical nonlinearities must be utilized to deal with the problem. The shooting method 

incorporated with Runge-Kutta are also proposed to solve nonlinear elastic behavior.  

 

2.2  Related Research 

There are many contributions related to the analysis of material nonlinearities 

of structural elements. Furthermore, the main purposes in the previous research studies 

perceive only the geometrical nonlinearities. In the last few decades, the problem of large 

deflection of a cantilever beam obeying generalized Ludwick’s material model subjected 

to a follower distributed load has not been investigated by many researchers. Most 

contributions related to the problem are revealed as below.  

2.2.1  Linear Material  

 Rao and Roa [12] studied large-deflection of a cantilever beam subjected 

to a rotational distributed loading. The model formulation is formulated by nonlinear 

differential equation of the second order. Meanwhile, the large deflection problem of 

cantilever beam subjected to a follower force and direct method for analysis of the flexible 

cantilever beams subjected to a follower forces, respectively, were considered by 

Shvartsman [13] and [14]. However, Kocaturk et al. [6] investigated the large deflection 

static analysis of a cantilever beam subjected to a point load. The method of nonlinear 

finite element is introduced. Phungpaingam et al. [15] investigated the post-buckling of 

beam subjected to follower. The elastica theory and the shooting method are applied to 

carry out the numerical results. Furthermore, the shooting method is set up to solve the 

problem of the large deflection of a cantilever beam with geometric nonlinearity [16]. 

While, Chen [17] proposed an integral approach for large deflection cantilever beams. 

The moment integral treatment are formulated to get the numerical solution. Otherwise, 

large deflections of a cantilever beam under an inclined end load studied by Mutyalarao 

et al [7]. Nallathambi et al. [18] described large deflection of constant curvature cantilever 

beam under follower load. The fourth order Runge–Kutta method and shooting method 

are proposed to get the numerical solution. And another is Kang and Li [19] established 

large and small deformation theories to solve the problem of the bending of functionally 

graded cantilever beam with power-law nonlinearity subjected to an end force. The 
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problem of application of the differential transformation method and variational iteration 

method to large deformation of cantilever beams under point load were considered by 

Salehi et al. [20]. The differential transformation method (DTM) and the variational 

iteration method (VIM) are proposed to get the results. However, Lu Li and Rong Li [21] 

focused on studying nonlinear bending of a cantilever beam subjected to a tip 

concentrated follower force. The theory of geometric material nonlinearities is applied to 

formulate the governing equations accompanies the shooting method to get the numerical 

results. One more thing is the model study and active control of a rotating flexible 

cantilever beam was dealt by Cai, G.P. et al. [22]. The finite element discretization 

method and Hamilton theory are proposed to carry out the numerical results. Moreover, 

Xiang et al. [23] researched on nonlinear analysis of a cantilever elastic beam under non-

conservative distributed load. The numerical results are solved by using the shooting 

method. Taking a look at this problem, Kim, J.O. et al. [24] employed finite element 

method to deal with beam stability on an elastic foundation subjected to distributed 

follower force.  

 Vazquez-Leal, et al. [25] examined the approximations for large 

deflection of a cantilever beam under a terminal follower force and nonlinear pendulum. 

The homotopy perturbation method and Laplace-Pad´e post treatment are established to 

solve the problems. Otherwise, the effect of subtangential parameter on the stability and 

dynamic of a cantilever tapered beams subjected to follower forces was researched by 

Auciello [26]. The variational approach with orthogonal polynomials is established to 

deal with the problem of the stability and dynamic of a cantilever tapered beams. 

 Another application of the cantilever beam problem can be proposed to 

Micro-electro-mechanical systems (MEMS). Presently, cantilever beam MEMS are very 

popular to many researchers to analyze and design new materials or structures to meet the 

requirement of the micro devices [27]. Otherwise, cantilever beam MEMS can be found 

in MEMS switch [28], atomic force microscopes [29], electronic filters [30], MEMS 

resonator [31], and data storage devices [32].  

Last but not least, the following related researches are illustrated the nonlinear 

elastic Ludwick material. 

2.2.2  Non-linear Elastic Ludwick Material  

 Determining large deflections for combined load cases made of Ludwick 

material by means of different arc length assumptions was investigated by Eren [33]. For 

mathematical formulation, materials of geometric nonlinearities are mentioned. The 

theory of Euler–Bernoulli is established to compute the horizontal and vertical 

deflections. Furthermore, Brojan et al. [8] analyzed non-prismatic nonlinearly elastic 

cantilever beams subjected to an end moment. The material is made of the Ludwick 

constitutive law. Moreover, Athisakul et al. [34] applied the shooting method to carry out 



28 

the numerical results with the problem of the effect of material nonlinearity on large 

deflection of variable-arc-length beams subjected to uniform self-weight. 

 One more interesting work is that Lee [9] investigated large deflection of 

cantilever beams of nonlinear elastic material under a combined loading. The shearing 

force formulation is set up to formulate the governing equation to solve the problem.  

Butcher’s fifth order Runge–Kutta method is employed to compute the numerical results. 

Narmluk et al. [35] also observed the large deflections of cantilever beams made of non-

linear elastic material under a follower tip loading obeying Ludwick’s constitutive law. 

The shooting method and Runge-Kutta-Felhberg integration technique are proposed to 

carry out the problem. Last but not least, the problem of Semi-exact solutions for large 

deflections of cantilever beams of non-linear elastic behavior was investigated by Solano-

Carrillo [11].  

 Borboni and Santis [10] dealt with the problem of large deflection of a 

non-linear, elastic, asymmetric Ludwick cantilever beam subjected to horizontal force, 

vertical force and bending torque at the free end. The Euler–Bernoulli beam theory was 

created to solve the problem. Otherwise, large deflections of cantilever column made 

from Ludwick’s material model under tension from guyed cable was proposed by Phonok 

[36]. The moment-curvature expression is formulated to establish the governing 

equations to dealt with the problem. The shooting method and Runge-Kutta integration 

technique are applied to get the numerical results. And, the non-linear material used in 

this research study n=0.5, 1.0, 2.0 and 3.0.  

2.2.3  Non-linear Elastic Generalized Ludwick Material  

 Brojan et al. [1] dealt with the large deflections of non-linearly elastic 

non-prismatic cantilever beams made from materials obeying the generalized Ludwick 

constitutive law. In the model formulation, the moment-curvature formula was set up to 

get the the governing equations and the boundary conditions in order to solve the problem. 

The similar problems of generalized Ludwick constitutive law are post-buckling of 

linearly tapered column and simply supported column made of nonlinear elastic materials 

obeying the generalized Ludwick constitutive law were studied by Saetiew and 

Chucheepsakul [2] and [3], respectively. The geometrical material nonlinearities are 

employed to formulate the governing equations. The shooting method is selected to carry 

out the numerical results. Last but not least, Brojan et al. [37] illustrated on static stability 

of nonlinearly elastic Euler’s columns obeying the modified Ludwick’s law. Four system 

states in static equilibrium are perceived as neutral, unstable, locally stable, and globally 

stable state.  

 As described literatures above, it was remarkable that research studies on 

the behavior of the large deflection problems that are made of material nonlinearities have 

carry out mostly the cantilever beams and columns. Only the small amount of research 
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studies handled the problem with a slender, follower distributed load cantilever beam. 

Brojan et al. [4] considered the large deflections of non-prismatic nonlinearly elastic 

cantilever beams subjected to non-uniform continuous load and a concentrated load at the 

free end obeying generalized Ludwick’s constitutive law.   

Nonetheless, up to this time the large-deflection of a cantilever beam obeying 
generalized Ludwick’s material model subjected to a follower distributed load has not 

been yet clarified elsewhere.  

By perceiving the effects of geometrical and material nonlinearities, the 

governing equations obtained for the large deflection behavior are highly nonlinear. 

Generally, the closed-form solutions cannot be employed in this situation. The shooting 

method is then required and played a vital role to obtain numerical solutions.  

 

 



CHAPTER 3 

MATHEMATICAL MODEL 

 

3.1  Assumption of the Analysis 

This research is to analyze the large deflection behavior of a cantilever beam 

obeying generalized Ludwick’s material model subjected to follower distributed load. 

The geometrical and material nonlinearities are employed to get the governing equations. 

Moreover, a set of highly nonlinear first-order differential equations with boundary 

conditions is set up and carried out numerically by using the shooting method 

incorporated with integration technique employing the seventh-order Runge–Kutta with 

adaptive step size control, as already mentioned in conceptual framework in chapter 1. 

 

3.2  Model Description 

Displayed in Fig. 3.1, OB is the length of cantilever beam subjected to a follower 

distributed load (w) with the undeformed configuration. Under loading, the beam 

undergoes large deflection and the deformed shape of the cantilever beam is presented by 

OA (Fig. 3.2). After deflection, the direction of the distributed load remains perpendicular 

to the axis of the beam. Moreover, in the research study, the intrinsic coordinate systems 

are s and . It is also required to carry out the tip angle  , the deflections at the tip of the 

cantilever beam ,o oX Y  , and the deformed configuration for follower distributed load. 

 

 

 

 

 

 

 

Figure 3.1  A cantilever beam subjected to the follower distributed load  

        with undeformed configuration  
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Figure 3.2  A cantilever beam subjected to the follower distributed load  

                   with deformed configuration 

 

3.3  Stress-strain Relationships 

The equilibrium of moment, geometric relationships, and constitutive relation-

ships are employed to get the mathematical formulation. A set of strongly nonlinear 

differential equations is acquired to illustrate the deformed shape of the cantilever beam 

subjected to a follower distributed load, as shown in Fig. 3.2. The solution procedures are 

also behaved in this section. 

3.3.1  Constitutive relationships 

 The generalizations of the Hooke’s law named Ludwick-type nonlinear 

elastic constitutive formula is chosen to describe the nonlinear elastic behavior. Its 

nonlinear stress–strain relationship can be written as shown below.  

1/

1/

; 0,

; 0.

n

n

E

E

 


 

 
 

 

               (3.1) 

where   normal stress 

     normal strain (for tensile 0  and compressive 0   domain) 

  E  material constant 

n  dimensionless parameter indicating the degree of material 

nonlinearity 
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  The nonlinear elastic material is “soft” for 1n  , i.e., decreasing modulus 

of the material d d  . Otherwise, nonlinear elastic material is “hard” for 1n  , i.e., 

increasing modulus of the material d d  . Obviously, the case of linear elastic 

(Hookean) material corresponds to 1n  . 

  However, Ludwick’s model (nonlinear) which is a generalization of the 

Hooke’s model embraces a description of elastic behavior of a wider range of materials 

but is not so mathematically compliant. Besides that, it has a major deficiency. Namely, 

the stress gradient is infinite (or zero) for sufficiently small strains, Fig. 3.3. Since it is 

impossible to demonstrate the actual material behaviors, Jung and Kang [38] suggested a 

generalized form of the Ludwick constitutive law, mathematically described by the 

following expression, 
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

          (3.2) 

in which an additional parameter 
0  is supplemented to prevent those shortcomings. 

 Three parameters ,E n and 
0  are employed to develop the generalized 

Ludwick’s constitutive law and applied to carry out the stress-strain curves acquired by 

the previous experiments. As a result of Eq. (3.2), setting 
0 0   leads to Ludwick-type 

material; therefore, the Hooke’s law is acquired by setting 1n  . 

 

 

 

 

 

 

 

 

 

 

Figure 3.3  Stress–strain relationships in tensile domain 
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Figure 3.4  Free-body diagram of an infinitesimal element of the beam 

 

 

 

 

Figure 3.5  Geometric relationship of beam element 

     

 The inner bending moment of a beam can be revealed with normal stress 

  at any cross-section as shown in Fig. 3.6. 

.
A

M ydA      (3.3) 

 

 

 

 

 

 

 

  

  

Figure 3.6  Stress distribution of generalized Ludwick’s type of the beam 



34 

 

 

 

 

 

 

Figure 3.7  Positive and negative of bending moment and curvature relations 

  

 Where   is related to the corresponding strain in compression and 

tension, see Eq. (3.2). Let dA bdy  be the infinitesimal cross-sectional area of the beam. 

Furthermore, employing the expression of normal strain-curvature y   ; hence 

 
1/ 1/

0 0 .
n n

A

M E ydA     
                    (3.4) 

 After some work, the inner bending moment-curvature utilizing material 

nonlinearities of cantilever beam obeying the generalized Ludwick’s constitutive law can 

be obtained as follows: 
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 Having done this, by setting 
0 0  into Eq. (3.5), the inner bending 

moment–curvature relationship of Ludwick-type is acquired. 
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 Otherwise, by specifying the value 1n   into Eq. (3.6), the inner bending 

moment–curvature relationship of Hooke’s law is achieved. 

0 ,M EI        (3.7) 

in which 
3

0
12

bh
I  is the moment of inertia of the rectangular cross-sectional area. 

 The result by differentiating Eq. (3.5) once with respect to the arc length 

s  reveals: 
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,n

dM d
EI

ds ds



      (3.9a) 

where 

 

     

1 1 1

0 0 0 0

2 2 2

1
2 2 2 2

2 1 2 1 2 1

n

n n n

n

h h h h
n h n h n h

I b
n n n




      

  


                  
            




 

     

1

2 2 1

20 0

0

3 3

4
42

.
2 1 1 2 1 1

n

n
n

n

h
n

n

n n n n

  


 






   

      




 (3.9b) 

 

 



36 

3.4  Governing Equations 

The theory of elastica is applied to get a set of governing equations. Applying the 

equilibrium equations, bending moment-curvature, and the geometric relations to the 

infinitesimal element ds  of the deformed beam Fig. 3.4 and 3.5, the set of differential 

equations this can be obtained as: 

cos ,
dx

ds
       (3.10) 
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cos ,
dV

w
ds

      (3.12) 

sin ,
dH

w
ds

      (3.13) 

 cos sin .
dM

V H
ds

        (3.14) 

By substituting Eq. (3.14) into Eq. (3.9), this can be achieved. 

 cos sin
,

n

V Hd

ds EI 

   
     (3.15) 

.
d

ds


       (3.16) 

The following non-dimensional terms are demonstrated to improve the generality 

in the computational process. 
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 (3.17) 

As mentioned earlier, by employing the non-dimensional terms above, Eq. (3.9) 

can be derived in non-dimensional expression as: 
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0

,nIdM d
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3

0 .
12

b h
I


                   (3.19b) 

Furthermore, the Eqs. (3.10) – (3.14) can be expressed in the non-dimensional 

forms as 

cos ,
dx

ds
                 (3.20) 

sin ,
dy

ds
               (3.21) 

cos ,
dV

w
ds

      (3.22) 

sin ,
dH

w
ds

      (3.23) 

 cos sin .
dM

V H
ds

        (3.24) 
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3.5  Boundary Conditions 

The boundary conditions are as follows: 

At 1s   

0, 0, 0, 0, 0.x y V N          (3.25) 

At 0s   

00, 0, 0, 0, .x y V N           (3.26) 

 

 

 

 

 

 

 

 

 

Figure 3.8  Boundary condition of cantilever beam subjected to follower  

                   distributed load 

 

 



 

CHAPTER 4 

RESEARCH METHODOLOGY 

 

4.1  General 

 In this study, the process is to carry out the effects of the nonlinear materials       

( n ) of the cantilever beam which influence over the large deflections of the beam made 

from generalized Ludwick’s constitutive law under the follower distributed load. 

According to proposed model, the governing equations with suitable boundary conditions 

are set up to deal with this problem. Moreover, the solutions of the problem are 

numerically solved by using the shooting method incorporated with integration technique 

employing the seventh-order Runge–Kutta with adaptive step size control. After 

satisfying the boundary condition, the results can be obtained. 

 

4.2  Method of Solution 

 Since a set of governing equations is a complicated nonlinear differential 

equation, hence the behavior of the deflected cantilever beam problem is described by 

numerical solutions.  

By substituting Eq. (3.24) into Eq. (3.18) and choosing Eqs. (3.20) – (3.23) of 

the geometric relationship and free-body diagram of an infinitesimal element of the beam, 

a set of nonlinear differential equations is achieved: 

,
d

ds


        (4.1a) 

  0cos sin ,
n

Id
V H

ds I 


        (4.1b) 

cos ,
dV

w
ds

       (4.1c) 

sin ,
dH

w
ds

       (4.1d) 

cos ,
dx

ds
                 (4.1e) 

sin .
dy

ds
       (4.1f) 
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 The boundary conditions of the problem are as follows: 

 
0( 0) and ( 1) 0,s s          (4.2a) 

 ( 0) 0 and ( 1) 0,s s         (4.2b) 

x( 0) 0 and x( 1) x(1),s s        (4.2c) 

( 0) 0 and ( 1) (1).y s y s y       (4.2d) 

Two-point boundary value problem of material nonlinearity can be acquired by 

employing Eq. (4.1) with boundary condition Eq. (4.2), which can be carried out by the 

shooting method. For a given value of 
0 , there is an unknown variable ( w ) needs to be 

computed. The solution steps are listed as follows: 

 (1) Assign the dimension of the cross-section in term of non-dimensional 

parameters ( and b h ), and the material constants (
0andn  ) to the problem. 

(2) Given the value of 
0  and estimate w  for the first iteration. 

(3) Integrate Eqs. (4.1a) – (4.1f) from 0s  to 1s   by employing the seventh-

order Runge–Kutta method. 

(4) Minimize the objective function   as 

  Minimize  (1) .
w

      (4.3) 

In the computational process, the value of   is required to be less than the 

tolerance (
710
) for the numerical solutions using the Newton-Raphson iterative scheme. 

 In the differential equations of material nonlinearity (3.18) and (4.1a)–(4.1b), it 

is important to realize that singularity can be occurred when setting 0   at the free end. 

To prevent this shortcoming, we set 
5(0) 1 10    instead of zero. 

 Last but not least, the flow charts for the computational procedures are 

illustrated in Fig. 4.1 and 4.2 as below. 
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   7(1) 10 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Figure 4.1  Flow chart of computational procedures by using Matlab program 1 

Input  

Input  

Specify the degree of material nonlinearity  

 

Apply the degree of material nonlinearity  

Input the end rotation  

 

Input the limitation and the increment 

Matlab program starts solving by using shooting 

method and 7th order Runge–Kutta method. 

 

 

 

Start 

Estimate 

  again 

Approximate distributed load   

 

<Lim END 
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   7(1) 10 

The second flow chart is applied  1
0 2

n

nn   and 
1

0
2

n

nn


 
  
 

for 1n   and 

1n  , respectively (Chapter 5, Case 2).  
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Figure 4.2  Flow chart of computational procedures by using Matlab program 2 

Input  

Input  

Apply the degree of material nonlinearity  

 

Input the end rotation  

 

Specify the limitation and the increment 

Matlab program starts solving by using shooting 

method and 7th order Runge–Kutta method. 

 

 

 

Start 

Estimate 

  again 

Approximate distributed load   

 

<Lim END 



CHAPTER 5 

RESULTS AND DISCUSSION 

 

 This research was analyzed the large deflection behavior of a cantilever beam 

obeying generalized Ludwick’s material model subjected to follower distributed load. In 

order to deal with the solutions of the problem, the shooting method incorporated with 

integration technique employing the seventh-order Runge–Kutta is established to get the 

numerical results comparing with the previous research study [1] investigated the large-

deflection behavior of a cantilever beam subjected to a rotational distributed loading 

which is formulated by means of a second order nonlinear-differential equation.  

Having compared the results with Rao and Rao [1], in this research was founded 

that the values of the rotation angle 0  and the follower distributed load w   are very close 

to those of Rao and Rao [1] while using 1n  . It is also shown in Table 5.1. 

 

Table 5.1  Comparison results between Rao and Rao [1] and the presented study 

 

0  w  

deg rad Rao and Rao [1] 
This research 

( 01, 0n   ) 

9.54 0.1665 1.0 0.99980 

19.04 0.3323 2.0 1.99978 

37.75 0.6589 4.0 4.00016 

55.83 0.9744 6.0 6.00041 

73.02 1.2744 8.0 7.99981 

89.15 1.5560 10.0 9.99972 

104.12 1.8172 12.0 11.99933 

130.43 2.2764 16.0 16.00006 

152.09 2.6545 20.0 19.99959 

169.68 2.9615 24.0 24.00033 

183.86 3.2090 28.0 28.00096 

195.27 3.4081 32.0 32.00189 
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5.1  Numerical Solutions 

In order to study the important parameters, the set of parameters 0 andn  is 

divided into two cases. The first case is 0andn  are varied independently. Second one is 

0andn  are related to each other. 

To analyze the numerical computations of the large deflections of cantilever 

beam obeying generalized Ludwick’s material model subjected to follower distributed 

load, the cross-sectional dimensions and length of the cantilever beam are given by the 

non-dimensional geometric parameters as follows: 0.2mb  and 0.2mh  . 

 5.1.1  Case 1: 0andn  are varied independently 

 To point out the nonlinear constitutive relationships clearly and simply 

we have chosen the following numerical examples, the rectangular cross-section of 

cantilever beam is subjected to several different follower distributed loads with the degree 

of material nonlinearity ( )n .  

Example 1 

The case of the cantilever beam with non-dimensional geometric parameters

0.2mb   and 0.2mh   was analyzed first. The nonlinear material parameters that 

determine are: 0 0.001   and n varying from 0.50,0.75..2.00 . The results listed in Table 

5.2 as shown below. 

 The result listed in Table 5.2 can be interpreted that when using n  varying from

0.50,0.75..2.00  with nonlinear elastic material 0 0.001   , it is worth noting that the 

rotation angle 0 and the follower distributed load w are both increase their values. 
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Table 5.2  Numerical results for cantilever beam made of the generalized Ludwick  

   nonlinear elastic material: 0 0.001   and n varying from 0.50,0.75..2.00  

 

 

 

 

  

 

0  

(rad) 

w  

0 0.001   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.027090 0.351219 1.201348 3.759995 5.044654 6.189575 

0.4 0.102706 0.866293 2.410405 5.988260 7.890623 9.176920 

0.6 0.243115 1.482040 3.635229 8.003270 10.210257 10.997713 

0.8 0.404222 2.181617 4.884284 10.206757 12.268636 13.890772 

1.0 0.634518 2.959364 6.166776 12.023368 14.179759 15.832106 

1.2 0.922219 3.815147 7.492988 13.791720 16.009048 17.667471 

1.4 1.271882 4.752561 8.874687 15.548056 17.802350 19.449509 

1.6 1.689311 5.778368 10.251237 17.323316 19.596736 21.219658 

1.8 1.181814 6.902510 11.782054 19.147406 21.333519 23.015005 

2.0 2.758578 8.138523 13.505596 21.052366 23.309333 24.873164 

2.2 3.431161 9.504355 15.280566 23.075574 25.338780 26.836744 

2.4 4.214203 11.023700 17.220641 25.263929 27.512862 28.736959 

2.6 5.126425 12.728098 19.353487 27.680240 29.824193 31.311607 

2.8 6.192100 14.660274 21.790026 30.414219 32.652169 34.001484 

3.0 7.443273 16.879618 24.568469 33.429724 35.873586 37.200813 

3.14 8.452045 18.648363 26.795681 36.224135 38.556951 39.901154 
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The relationship of the load-displacement curve for the nonlinearly cantilever 

beam between the follower distributed load w  and the rotation angle 0  are exhibited 

with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Load-displacement curve for the nonlinearly cantilever beam subjected to  

                   follower distributed load 0 0.001   

 

 As illustrated in Fig. 5.1, the load–displacement curves of the cantilever beam 

with various material nonlinearity parameters n are plotted. The behaviors of the 

cantilever beam for three cases ( 1n  , 1n  , and 1n  ) with 0 0.001   are described 

by using the load–displacement curves (Fig. 5.1).  

It should be noted that a linear case 1n   (Fig. 5.1), the well-known load-

displacement curve is monotonic and stable. As it can be seen from the Fig. 5.1, the 

follower distributed load w  increases as the rotation angle 0  increases.  

Furthermore, it is remarkable to note that the case of hardening material, where 

1n   and 1n   (Fig. 5.1), the follower distributed load w  and the rotation angle 0  both 

increase in their values. 
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In addition, the equilibrium configurations for 0 1.2   and 0 2.0   are 

selected to indicate in the Fig. 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  Equilibrium configurations for 0 1.2   and 0 2.0   

 

Moreover, the nonlinearity material parameters 0.50n  , 1n  , and 1.30n 

are selected to show the deflection configuration in the Fig. 5.3, 5.4, and 5.5, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  Deflection configurations of the nonlinearly cantilever beam subjected to 

                   follower distributed load 0.50n   
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Figure 5.4  Deflection configurations of the nonlinearly cantilever beam subjected to 

                   follower distributed load 1n   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  Deflection configurations of the nonlinearly cantilever beam subjected to 

                   follower distributed load 1.30n   

 

 

Finally, their deflection configuration results for 0.50n  , 1.00n  , and 

1.30n   are displayed in Table 5.3, 5.4, and 5.5, respectively. 
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Table 5.3  Numerical results for cantilever beam made of the generalized Ludwick  

                  material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4  Numerical results for cantilever beam made of the generalized Ludwick  

                  material for 1n   

 

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.001n    

0 (rad) w  

1 0.2 2.758578 

2 0.4 0.102706 

3 0.8 0.404222 

4 1.2 0.922219 

5 1.6 1.689311 

6 2.0 2.758578 

7 2.4 4.214203 

8 2.8 6.192100 

9 3.14 8.452045 

Configuration 
01 and 0.001n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 10.251237 

6 2.0 13.505596 

7 2.4 17.220641 

8 2.8 21.790026 

9 3.14 26.795681 
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Table 5.5  Numerical results for cantilever beam made of the generalized Ludwick  

                  material for 1.30n   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As displayed in the figures (5.3, 5.4, and 5.5) and the tables (5.3, 5.4, and 5.5), 

the deflected shapes with the same slope angle are mostly identical whether the 

nonlinearity material parameters are selected with different values ( 0.50n  , 1n  , and 

1.30n  ). Otherwise, it is very interesting to take a note that the follower distributed load 

w  successively increases while the rotation angle 0  increases. But, it is remarkable to 

note for 0.50n   that the follower distributed load w  slowly increases near the value of 

0 0.8  . 

 

  

Configuration 
01.30and 0.001n    

0 (rad) w  

1 0.2 2.686490 

2 0.4 4.699971 

3 0.8 8.234361 

4 1.2 11.561950 

5 1.6 14.937766 

6 2.0 18.566319 

7 2.4 22.700362 

8 2.8 27.750629 

9 3.14 33.369313 
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Example 2 

As the second example, all the parameters are kept the same as in the first 

example except 0 0.002  . The results listed in Table 5.6 as shown below. 

 

Table 5.6  Numerical results for cantilever beam made of the generalized Ludwick  

  nonlinear elastic material: 0 0.002   and n  varying from 0.50,0.75..2.00  

 

 

0  

(rad) 

w  

0 0.002   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.030000 0.365840 1.390990 3.576958 4.711202 5.533119 

0.4 0.108740 0.887916 2.410405 5.986771 7.319147 8.778117 

0.6 0.237053 1.509028 3.635229 8.061968 9.661614 11.208064 

0.8 0.416733 2.213030 4.884284 9.965219 11.859777 13.319680 

1.0 0.650400 2.994707 6.166776 11.773619 13.536827 15.250057 

1.2 0.941586 3.854122 7.425458 13.533411 15.584611 17.076075 

1.4 1.294879 4.745821 8.874605 15.283949 17.370118 18.849674 

1.6 1.716114 5.770527 10.320950 17.018005 19.156962 20.611602 

1.8 2.212642 6.951755 11.862522 18.302868 20.978948 22.398432 

2.0 2.793697 8.193478 13.505596 20.484577 22.871141 24.247270 

2.2 3.470901 9.455371 15.276513 22.388193 24.873694 26.200093 

2.4 4.258971 11.084094 17.118820 24.853231 27.027814 28.309105 

2.6 5.176734 12.792874 19.370085 27.248978 29.427385 30.644986 

2.8 6.248600 14.730014 21.790026 29.172339 32.143407 33.024377 

3.0 7.506806 16.955204 24.56884 33.265730 35.338013 36.624828 

3.14 8.521145 18.728773 26.79442 35.868720 37.822884 38.729547 



52 

The relationship of the load-displacement curve ( 0 0.002  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6  Load-displacement curve for the nonlinearly cantilever beam subjected to  

                   follower distributed load 0 0.002   

  

As displayed in Fig. 5.6, the behaviors of the cantilever beam for the nonlinearly 

parameters 0.50n  , 1.00n  , and 1.30n   with 0 0.002   are described by employing 

the load–displacement curves (Fig. 5.6).  

It is worth noting that a linear case 1n   (Fig. 5.6), the well-known load-

displacement curve remains monotonic and stable comparing to 0 0.001  . As it can be 

viewed from the Fig. 5.1, the follower distributed load w  increases as the rotation angle 

0  increases.  
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The equilibrium configurations ( 0 0.002  ) for 0 1.2   and 0 2.0   are 

selected to indicate in the Fig. 5.7.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  Equilibrium configurations for 0 1.2   and 0 2.0   

 

Furthermore, the nonlinearity material parameters 0.50n  , 1.00n  , and

1.30n  are selected to show the deflection configuration in the Fig. 5.8, 5.9, and 5.10, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  Deflection configurations of the nonlinearly cantilever beam subjected to 

                   follower distributed load 0.50n   
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Figure 5.9  Deflection configurations of the nonlinearly cantilever beam subjected to 

                   follower distributed load 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   
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Table 5.7  Numerical results for cantilever beam made of the generalized Ludwick  

                  material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8  Numerical results for cantilever beam made of the generalized Ludwick  

                  material for 1.00n   

  

Configuration 
00.50and 0.002n    

0 (rad) w  

1 0.2 0.030000 

2 0.4 0.108740 

3 0.8 0.416733 

4 1.2 0.941586 

5 1.6 1.716114 

6 2.0 2.793697 

7 2.4 4.258971 

8 2.8 6.248600 

9 3.14 8.521145 

Configuration 
01.00and 0.002n    

0 (rad) w  

1 0.2 1.39099 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.425458 

5 1.6 10.32095 

6 2.0 13.505596 

7 2.4 17.11882 

8 2.8 21.790026 

9 3.14 26.794424 
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Table 5.9  Numerical results for cantilever beam made of the generalized Ludwick  

                  material for 1.30n   

 

 

 

 

 

 

 

 

 

 

 

 

 

As described in the first example with the nonlinear elastic materials 0 0.001 

, the deflected shapes with the same slope angle in the Fig. 5.8, 5.9, and 5.10 are 

indistinguishable whether the nonlinearity material parameters are chosen with different 

values ( 0.50n  , 1n  , and 1.30n  ). It is remarkable for 0.50n   that the follower 

distributed load w  slowly increases near the value of 0 1.2   while others are increasing 

successively.  

Other numerical results for the large deflection of the cantilever beam made of 

the generalized Ludwick constitutive law are demonstrated as below. The nonlinear 

elastic materials 0 0.003   to 0 0.01   with the degree of material nonlinearity n varying 

from 0.50,0.75..2.00  will be chosen to show as the following examples. 

  

  

Configuration 
01.30and 0.002n    

0 (rad) w  

1 0.2 2.389235 

2 0.4 4.592765 

3 0.8 8.110615 

4 1.2 11.118085 

5 1.6 14.483269 

6 2.0 18.415690 

7 2.4 22.421698 

8 2.8 27.576021 

9 3.14 33.174583 
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Example 3 

As the third example, all the parameters are kept the same as in the first 

example except 0 0.003  . The results listed in Table 5.10 as shown below. 

 

Table 5.10  Numerical results for cantilever beam made of the generalized Ludwick  

    nonlinear elastic material: 0 0.003   and n varying from 0.50,0.75..2.00  

 

  

0  

(rad) 

w  

0 0.003   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.032822 0.378473 1.201348 3.434369 2.733814 3.810573 

0.4 0.114631 0.907267 2.293112 5.822651 7.244021 8.524970 

0.6 0.246107 1.533365 3.635229 7.899699 9.525022 10.804016 

0.8 0.429035 2.241628 4.884284 9.777679 11.557744 12.634702 

1.0 0.666047 3.027102 6.166776 11.578463 13.357236 14.819578 

1.2 0.960698 3.890036 7.492988 13.333459 15.456943 16.637830 

1.4 1.317599 4.827818 8.874687 15.076714 16.425417 18.403662 

1.6 1.742620 5.866771 10.325675 16.848416 18.887403 20.158158 

1.8 2.243151 6.997624 11.862520 18.611931 20.571502 21.937452 

2.0 2.828475 8.240526 13.505594 20.546486 22.205723 23.778223 

2.2 3.510276 9.613594 15.280559 22.557089 24.321443 25.721938 

2.4 4.303349 11.140720 17.220642 24.729622 26.492582 27.820101 

2.6 5.226624 12.853768 19.370085 27.093822 28.557592 30.142284 

2.8 6.304648 14.795595 21.790026 28.627982 31.748275 32.728555 

3.0 7.569849 17.026361 24.569119 32.992422 34.921503 35.756704 

3.14 8.589725 18.804523 26.795572 35.361549 37.555815 38.208978 
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Shown in the figure below is the relationship of the load-displacement curve        

( 0 0.003  ) for the nonlinearly cantilever beam between the follower distributed load w  

and the rotation angle 0 .  As it can be seen from the Fig. 5.11, the follower distributed 

load w  increases as the rotation angle 0  increases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.003   

 

The equilibrium configurations ( 0 0.003  ) for 0 1.2   and 0 2.0   are 

chosen to demonstrate in the Fig. 5.12.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Equilibrium configurations for 0 1.2   and 0 2.0   
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The nonlinearity material parameters 0.50n  , 1.00n  , and 1.30n   are 

selected to show the deflection configuration in the Fig. 5.13, 5.14 and 5.15, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.13  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

Figure 5.14  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.15  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

As shown in this example with nonlinear elastic materials 0 0.003  , the 

deflected shapes with the same slope angle in the Fig. 5.13, 5.14, and 5.15 are identical 

whether the nonlinearity material parameters are chosen with different values ( 0.50n  ,

1n  , and 1.30n  ).  

Their deflection configuration results for 0.50n  , 1.00n  , and 1.30n   are 

displayed in Table 5.11, 5.12, and 5.13, respectively. 
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Table 5.11  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.12  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

  

Configuration 
00.50and 0.003n    

0 (rad) w  

1 0.2 0.032822 

2 0.4 0.114631 

3 0.8 0.429035 

4 1.2 0.960698 

5 1.6 1.742620 

6 2.0 2.828475 

7 2.4 4.303349 

8 2.8 6.304648 

9 3.14 8.589725 

Configuration 
01.00and 0.003n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.293112 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 10.325675 

6 2.0 13.505594 

7 2.4 17.220642 

8 2.8 21.790026 

9 3.14 26.795572 
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Table 5.13  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.30and 0.003n    

0 (rad) w  

1 0.2 2.528194 

2 0.4 4.509101 

3 0.8 8.011507 

4 1.2 11.319434 

5 1.6 14.679141 

6 2.0 18.291713 

7 2.4 22.407013 

8 2.8 27.431040 

9 3.14 18.291713 
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Example 4 

As the fourth example, all the parameters are kept the same as in the first 

example except 0 0.004  . The results listed in Table 5.14 as shown below. 

 

Table 5.14  Numerical results for cantilever beam made of the generalized Ludwick  

     nonlinear elastic material: 0 0.004   and n varying from 0.50,0.75..2.00  

 

 

0  

(rad) 

w  

0 0.004   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.035582 0.389820 1.201348 3.317766 4.286590 0.062499 

0.4 0.120414 0.924927 2.277383 5.687636 7.021656 7.820182 

0.6 0.255020 1.555891 3.635229 7.637986 9.178778 10.476525 

0.8 0.441169 2.268280 4.884284 9.619852 11.305771 12.400989 

1.0 0.681503 3.057446 6.166397 11.413386 13.187961 13.593150 

1.2 0.979596 3.877723 7.473941 13.162219 14.539671 16.278647 

1.4 1.340087 4.871322 7.783359 14.812065 15.288596 18.035269 

1.6 1.768874 5.907026 10.251237 16.644437 17.784550 19.518374 

1.8 2.273389 7.041096 11.862454 18.463709 18.823767 21.158680 

2.0 2.862963 8.221918 13.505493 20.358031 20.344134 23.346221 

2.2 3.549339 9.663816 15.257827 22.048832 24.062405 25.325457 

2.4 4.347392 11.194645 17.228803 24.382639 26.311047 27.413831 

2.6 5.276152 12.730916 19.365026 26.167583 28.725912 29.083274 

2.8 6.360306 14.858255 21.789895 28.031553 30.225745 32.358214 

3.0 7.632470 17.094410 24.568438 32.758908 34.568787 35.464044 

3.14 8.657857 18.876985 26.660928 35.116941 36.784581 37.923861 
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Shown in the figure below is the relationship of the load-displacement curve        

( 0 0.004  ) for the nonlinearly cantilever beam between the follower distributed load w  

and the rotation angle 0 .   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.004   

 

The equilibrium configurations ( 0 0.004  ) for 0 1.2   and 0 2.0   are 

displayed in the Fig. 5.17.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17  Equilibrium configurations for 0 1.2   and 0 2.0   
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The nonlinearity material parameters 0.50n  , 1.00n  , and 1.30n   are 

selected to show the deflection configuration in the Fig. 5.18, 5.19 and 5.20, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

Figure 5.19  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.20  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

Their deflection configuration results are displayed in tables below. 

 

Table 5.15  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.004n    

0 (rad) w  

1 0.2 0.035582 

2 0.4 0.120414 

3 0.8 0.441169 

4 1.2 0.979596 

5 1.6 1.768874 

6 2.0 2.862963 

7 2.4 4.347392 

8 2.8 6.360306 

9 3.14 8.657857 
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Table 5.16  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

Table 5.17  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.00and 0.004n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.277383 

3 0.8 4.884284 

4 1.2 7.473941 

5 1.6 10.251237 

6 2.0 13.505493 

7 2.4 17.228803 

8 2.8 21.789895 

9 3.14 26.660928 

Configuration 
01.30and 0.004n    

0 (rad) w  

1 0.2 2.472334 

2 0.4 4.438722 

3 0.8 7.926483 

4 1.2 11.225448 

5 1.6 14.491682 

6 2.0 18.183139 

7 2.4 22.159412 

8 2.8 27.303193 

9 3.14 32.869493 



68 

Example 5 

As the fifth example, all the parameters are kept the same as in the first 

example except 0 0.005  . The results listed in Table 5.18 as shown below. 

 

Table 5.18  Numerical results for cantilever beam made of the generalized Ludwick 

     nonlinear elastic material: 0 0.005   and n varying from 0.50,0.75..2.00  

    

 

0  

(rad) 

w  

0 0.005   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.038297 0.400227 1.201348 3.302631 3.973818 4.705009 

0.4 0.126113 0.739948 2.410405 5.571141 6.712540 7.829850 

0.6 0.263825 1.567632 3.635229 7.606468 9.015434 9.827292 

0.8 0.453184 2.218337 4.884284 9.481738 10.799546 12.170138 

1.0 0.696829 3.086207 6.166776 10.996878 12.961780 14.168972 

1.2 0.998375 3.955917 7.492988 13.011282 14.759472 15.969968 

1.4 1.362396 4.956411 8.874687 14.744769 16.524495 17.721293 

1.6 1.794927 5.945479 10.325675 16.498332 18.291967 19.376565 

1.8 2.303406 7.057828 11.862520 18.300835 20.094646 21.187090 

2.0 2.897210 8.169428 13.505593 20.183303 21.966638 23.054156 

2.2 3.588143 9.712033 15.280556 22.182026 23.946989 24.981956 

2.4 4.391156 11.16569 17.220624 24.342518 26.084386 27.061539 

2.6 5.325375 12.96749 19.370067 26.725423 28.347968 29.405176 

2.8 6.415627 14.91857 21.790003 29.417081 31.130740 31.945413 

3.0 7.694716 17.15993 24.568442 32.429344 34.095509 35.056072 

3.14 8.725589 18.94676 26.627199 35.103484 34.745571 37.263899 
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The relationship of the load-displacement curve ( 0 0.005  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.005   

  

The load–displacement curves of the cantilever beam with various material 

nonlinearity parameters n are plotted in Fig. 5.21. Demonstrated in this figure is the load–

displacement curves to play a key role in explaining the behavior of the cantilever beam 

for all three possible cases ( 1n  , 1n  , and 1n  ) with 0 0.005  .  

It is similar to 0 0.001  , a linear case 1n   (Fig. 5.21), the well-known load-

displacement curve is monotonic and stable. As it can be seen from the Fig. 5.21, the 

follower distributed load w  increases as the rotation angle 0  increases.  
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The equilibrium configurations ( 0 0.005  ) for 0 1.2   and 0 2.0   are 

selected to indicate in the Fig. 5.22.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22  Equilibrium configurations for 0 1.2   and 0 2.0   

 

Furthermore, the nonlinearity material parameters 0.50n  , 1.00n  , and

1.30n   are selected to show the deflection configuration in the Fig. 5.23, 5.24 and 5.25, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   
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Figure 5.24  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   
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Table 5.19  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.20  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

  

Configuration 
00.50and 0.005n    

0 (rad) w  

1 0.2 0.038297 

2 0.4 0.126113 

3 0.8 0.453184 

4 1.2 0.998375 

5 1.6 1.794927 

6 2.0 2.897210 

7 2.4 4.391156 

8 2.8 6.415627 

9 3.14 8.725589 

Configuration 
01.00and 0.005n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 10.325675 

6 2.0 13.505593 

7 2.4 17.220624 

8 2.8 21.790003 

9 3.14 26.627199 
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Table 5.21  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  
Configuration 

01.30and 0.005n    

0 (rad) w  

1 0.2 2.424564 

2 0.4 4.377278 

3 0.8 7.851029 

4 1.2 10.849223 

5 1.6 14.486503 

6 2.0 17.836980 

7 2.4 21.967941 

8 2.8 27.187173 

9 3.14 32.739442 
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Example 6 

As the sixth example, all the parameters are kept the same as in the first 

example except 0 0.006  . The results listed in Table 5.22 as shown below. 

 

Table 5.22  Numerical results for cantilever beam made of the generalized Ludwick 

     nonlinear elastic material: 0 0.006   and n varying from 0.50,0.75..2.00  

  

0  

(rad) 

w  

0 0.006   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.040976 0.409901 1.201348 3.148763 3.995441 4.167546 

0.4 0.131737 0.956846 2.410405 5.468486 6.426896 7.612709 

0.6 0.272511 1.597078 3.635229 7.491667 8.691016 9.954955 

0.8 0.465028 2.317391 4.884284 9.323829 10.896245 12.019552 

1.0 0.711944 3.113681 6.166776 10.925664 12.669351 13.817577 

1.2 1.016866 3.986680 7.492988 12.875108 14.551091 15.697037 

1.4 1.384479 4.940534 8.874687 14.603503 16.309814 17.441472 

1.6 1.820748 5.982459 10.325675 16.352287 18.071387 19.114094 

1.8 2.333177 7.122768 11.862520 18.150111 19.868270 20.834232 

2.0 2.931194 8.375358 13.505593 20.027788 21.734288 22.754923 

2.2 3.626664 9.758568 15.280556 22.021389 23.708175 24.675507 

2.4 4.434615 11.296562 17.220624 24.176180 25.838259 26.746757 

2.6 5.374279 13.021481 19.370067 26.552400 28.189005 28.914848 

2.8 6.470615 14.976876 21.790003 29.235776 29.496491 31.169994 

3.0 7.756618 17.223375 24.568443 32.356454 33.950562 33.825173 

3.14 8.792960 19.014456 26.795508 34.921646 36.182802 36.345580 
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The relationship of the load-displacement curve ( 0 0.006  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.006   

 

  

The equilibrium configurations ( 0 0.006  ) for 0 1.2   and 0 2.0   are 

selected to indicate in the Fig. 5.27.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27  Equilibrium configurations for 0 1.2   and 0 2.0   
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Furthermore, the nonlinearity material parameter 0.50n  , 1.00n  , and

1.30n   are selected to show the deflection configuration in the Fig. 5.28, 5.29 and 5.30, 

respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.28  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.30  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

 

 

Table 5.23  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.006n    

0 (rad) w  

1 0.2 0.040976 

2 0.4 0.131737 

3 0.8 0.465028 

4 1.2 1.016866 

5 1.6 1.820748 

6 2.0 2.931194 

7 2.4 4.434615 

8 2.8 6.470615 

9 3.14 8.792960 



78 

Table 5.24  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.25  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.00and 0.006n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 10.325675 

6 2.0 13.505593 

7 2.4 17.220624 

8 2.8 21.790003 

9 3.14 26.795508 

Configuration 
01.30and 0.006n    

0 (rad) w  

1 0.2 2.382651 

2 0.4 4.322404 

3 0.8 7.782682 

4 1.2 11.064441 

5 1.6 14.402936 

6 2.0 17.900352 

7 2.4 22.087475 

8 2.8 27.079972 

9 3.14 32.619123 
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Example 7 

As the seventh example, all the parameters are kept the same as in the first 

example except 0 0.007  . The results listed in Table 5.26 as shown below. 

 

Table 5.26  Numerical results for cantilever beam made of the generalized Ludwick 

    nonlinear elastic material: 0 0.007   and n varying from 0.50,0.75..2.00  

  

0  

(rad) 

w  

0 0.007   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.043625 0.418980 1.201348 3.076992 3.726706 4.363295 

0.4 0.137302 0.971522 2.410405 5.115417 6.375783 7.279405 

0.6 0.281119 1.616190 3.635229 7.324731 8.630961 9.743064 

0.8 0.476788 2.340321 4.884284 9.209134 10.435752 11.486439 

1.0 0.726965 3.140056 6.166776 10.843886 12.578253 13.587470 

1.2 1.035273 4.016267 7.492988 12.574744 14.182070 15.440389 

1.4 1.406424 4.973211 8.874687 14.473858 15.993959 17.102494 

1.6 1.846408 6.018167 10.325675 16.041853 17.870449 18.916985 

1.8 2.362769 7.161514 11.862520 17.913712 19.661736 20.671316 

2.0 2.964982 8.417214 13.505593 19.884386 21.522013 22.483568 

2.2 3.664972 9.803677 15.280556 21.873091 23.489730 24.397263 

2.4 4.477843 11.345151 17.220624 23.921537 25.612855 26.460621 

2.6 5.422928 13.073886 19.370067 26.266941 27.955323 28.560333 

2.8 6.525323 15.033581 21.790003 29.067836 29.338203 31.148469 

3.0 7.818212 17.285080 24.568444 32.178056 33.353210 33.450571 

3.14 8.860008 19.080261 26.615320 33.605084 36.087674 35.082146 
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The relationship of the load-displacement curve ( 0 0.007  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.007   

 

  

The equilibrium configurations ( 0 0.007  ) for 0 1.2   and 0 2.0   are 

selected to indicate in the Fig. 5.32.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32  Equilibrium configurations for 0 1.2   and 0 2.0   
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Furthermore, the nonlinearity material parameter 0.50n  , 1.00n  , and

1.30n  are selected to show the deflection configuration in the Fig. 5.33, 5.34 and 5.35, 

respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.33  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.35  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

 

Table 5.27  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.007n    

0 (rad) w  

1 0.2 0.043625 

2 0.4 0.137302 

3 0.8 0.476788 

4 1.2 1.035273 

5 1.6 1.846408 

6 2.0 2.964982 

7 2.4 4.477843 

8 2.8 6.525323 

9 3.14 8.860008 
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Table 5.28  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.29  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.00and 0.007n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 0.325675 

6 2.0 13.505593 

7 2.4 17.220624 

8 2.8 21.790003 

9 3.14 26.615320 

Configuration 
01.30and 0.007n    

0 (rad) w  

1 0.2 2.345222 

2 0.4 4.272630 

3 0.8 7.719904 

4 1.2 10.993487 

5 1.6 14.301371 

6 2.0 17.688044 

7 2.4 21.996624 

8 2.8 26.979744 

9 3.14 32.506505 
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Example 8 

As the eighth example, all the parameters are kept the same as in the first 

example except 0 0.008  . The results listed in Table 5.30 as shown below. 

 

Table 5.30  Numerical results for cantilever beam made of the generalized Ludwick 

    nonlinear elastic material: 0 0.008   and n varying from 0.50,0.75..2.00  

  

0  

(rad) 

w  

0 0.008   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.042283 0.427561 1.201348 3.012606 3.472735 4.275976 

0.4 0.142812 0.985517 2.410405 5.292216 6.133971 6.667443 

0.6 0.289650 1.634510 3.635229 7.195807 8.385512 9.412610 

0.8 0.488449 2.362377 4.884284 8.963237 10.398294 11.355869 

1.0 0.741869 3.165492 6.166776 10.215635 11.670345 12.756520 

1.2 1.053548 4.044861 7.492988 12.378904 14.188537 15.087512 

1.4 1.428218 5.004843 8.874687 14.267386 15.861205 16.957755 

1.6 1.871902 6.052780 10.325675 16.093254 17.685191 18.679792 

1.8 2.392180 7.199116 11.862520 17.791077 19.471028 20.401969 

2.0 2.998574 8.457876 13.505593 19.747971 21.325774 22.141897 

2.2 3.703067 9.847541 15.280556 21.529422 23.286668 24.141347 

2.4 4.520841 11.392437 17.220624 23.763703 25.351900 24.141347 

2.6 5.471327 13.124921 19.370067 26.242613 27.738601 28.459253 

2.8 6.579756 15.088837 21.735301 28.910720 29.613800 30.155835 

3.0 7.879495 17.345244 24.224703 31.843347 32.976371 32.429332 

3.14 8.926707 19.144442 26.792420 33.885535 35.864798 32.429330 
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The relationship of the load-displacement curve ( 0 0.008  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.008   

  

The equilibrium configurations ( 0 0.008  ) for 0 1.2   and 0 2.0   are 

selected to display in the Fig. 5.37.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.37  Equilibrium configurations for 0 1.2   and 0 2.0   
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Furthermore, the nonlinearity material parameters 0.50n  , 1.00n  , and

1.30n   are selected to show the deflection configuration in the Fig. 5.38, 5.39 and 5.40, 

respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.38  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.40  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

 

Table 5.31  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.008n    

0 (rad) w  

1 0.2 0.042283 

2 0.4 0.142812 

3 0.8 0.488449 

4 1.2 1.053548 

5 1.6 1.871902 

6 2.0 2.998574 

7 2.4 4.520841 

8 2.8 6.579756 

9 3.14 8.926707 
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Table 5.32  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.33  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.00and 0.008n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 10.325675 

6 2.0 13.505593 

7 2.4 17.220624 

8 2.8 21.735301 

9 3.14 26.792420 

Configuration 
01.30and 0.008n    

0 (rad) w  

1 0.2 2.311362 

2 0.4 4.226970 

3 0.8 7.661656 

4 1.2 10.512203 

5 1.6 14.160443 

6 2.0 17.784572 

7 2.4 21.910731 

8 2.8 26.701534 

9 3.14 32.400208 
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Example 9 

As the ninth example, all the parameters are kept the same as in the first 

example except 0 0.009  . The results listed in Table 5.34 as shown below. 

 

Table 5.34  Numerical results for cantilever beam made of the generalized Ludwick 

     nonlinear elastic material: 0 0.009   and n varying from 0.50,0.75..2.00  

  

0  

(rad) 

w  

0 0.009   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.048857 0.435717 1.201348 2.829611 3.682674 4.279377 

0.4 0.148279 0.998924 2.410405 5.150877 5.669855 7.069134 

0.6 0.298116 1.652138 3.635229 7.012241 8.170487 9.362910 

0.8 0.500026 2.383666 4.884284 9.045394 10.035450 11.385183 

1.0 0.756671 3.190101 6.166776 10.719117 11.863989 13.157925 

1.2 1.071704 4.072578 7.492988 12.441180 13.957979 14.929130 

1.4 1.449881 5.035549 8.874687 14.241098 15.767341 16.637077 

1.6 1.897250 6.086421 10.325675 15.973252 17.515763 18.455046 

1.8 2.421430 7.235702 11.862520 17.761904 19.292924 20.122557 

2.0 3.031989 8.497479 13.505593 19.627280 21.142739 21.910108 

2.2 3.740970 9.890297 15.280556 21.416982 23.022681 23.718358 

2.4 4.563630 11.438563 17.220624 23.743539 25.098780 25.812961 

2.6 5.519505 13.174737 19.370067 25.978212 27.525141 28.058526 

2.8 6.633972 15.142806 21.782721 28.762620 29.561947 30.730084 

3.0 7.940806 17.404035 24.441044 31.624124 32.823993 33.449554 

3.14 8.993232 19.207177 26.794311 33.914010 34.640489 36.255189 
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The relationship of the load-displacement curve ( 0 0.009  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.41  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.009   

  

The equilibrium configurations ( 0 0.009  ) for 0 1.2   and 0 2.0   are 

chosen to indicate in the Fig. 5.42.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.42 Equilibrium configurations for 0 1.2   and 0 2.0   
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Furthermore, the nonlinearity material parameters 0.50n  , 1.00n  , and 

1.30n   are selected to show the deflection configuration in the Fig. 5.43, 5.44 and 5.45, 

respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.43  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.44  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.45  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

 

Table 5.35  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.009n    

0 (rad) w  

1 0.2 0.048857 

2 0.4 0.148279 

3 0.8 0.500026 

4 1.2 1.071704 

5 1.6 1.897250 

6 2.0 3.031989 

7 2.4 4.563630 

8 2.8 6.633972 

9 3.14 8.993232 
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Table 5.36  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.37  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.00and 0.009n    

0 (rad) w  

1 0.2 1.201348 

2 0.4 2.410405 

3 0.8 4.884284 

4 1.2 7.492988 

5 1.6 10.325675 

6 2.0 13.505593 

7 2.4 17.220624 

8 2.8 21.782721 

9 3.14 26.794311 

Configuration 
01.30and 0.009n    

0 (rad) w  

1 0.2 2.280423 

2 0.4 4.184718 

3 0.8 7.607192 

4 1.2 10.646678 

5 1.6 14.184550 

6 2.0 17.756516 

7 2.4 20.816045 

8 2.8 26.951947 

9 3.14 32.299234 
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Example 10 

As the tenth example, all the parameters are kept the same as in the first 

example except 0 0.01  . The results listed in Table 5.38 as shown below. 

 

Table 5.38  Numerical results for cantilever beam made of the generalized Ludwick 

     nonlinear elastic material: 0 0.01   and n varying from 0.50,0.75..2.00  

  

0  

(rad) 

w  

0 0.01   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.051445 0.443503 1.201348 2.901503 3.593247 3.983886 

0.4 0.153704 1.011815 2.410405 5.143261 5.921480 6.921757 

0.6 0.306518 1.669155 3.635229 7.120768 7.907919 8.805891 

0.8 0.511521 2.404274 4.884284 8.957290 10.280682 10.993522 

1.0 0.771376 3.213972 6.166776 10.278962 12.045345 13.028472 

1.2 1.089749 4.099510 7.492988 12.425871 13.559527 14.490595 

1.4 1.471416 5.065425 8.874687 13.724187 15.531799 16.546260 

1.6 1.922456 6.119190 10.325675 15.735595 17.316238 18.255472 

1.8 2.450523 7.271376 11.862520 17.646945 18.973345 19.815532 

2.0 3.065234 8.536127 13.505593 19.444520 20.876250 21.781018 

2.2 3.778688 9.932056 15.280556 21.563133 22.796860 23.652007 

2.4 4.606218 11.483645 17.220624 23.738057 24.659520 25.700992 

2.6 5.567467 13.223455 19.370067 25.361291 27.216084 27.884587 

2.8 6.688031 15.195612 21.790003 28.498975 29.063963 30.012854 

3.0 8.001651 17.461587 24.290324 30.195000 32.586661 31.322268 

3.14 9.059432 19.268608 26.459706 32.977805 35.095894 32.315460 
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The relationship of the load-displacement curve ( 0 0.01  ) for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotation angle 0  are 

demonstrated with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.46  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0 0.01   

 

 The equilibrium configurations ( 0 0.01  ) for 0 1.2   and 0 2.0   are 

chosen to indicate in the Fig. 5.47.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.47  Equilibrium configurations for 0 1.2   and 0 2.0   
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Furthermore, the nonlinearity material parameters 0.50n  , 1.00n  , and

1.30n   are selected to show the deflection configuration in the Fig. 5.48, 5.49 and 5.50, 

respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.48  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.50n   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.49  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.00n   
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Figure 5.50  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   

 

 

Table 5.39  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

Configuration 
00.50and 0.01n    

0 (rad) w  

1 0.2 0.051444 

2 0.4 0.153704 

3 0.8 0.511521 

4 1.2 1.089748 

5 1.6 1.922455 

6 2.0 3.065234 

7 2.4 4.606218 

8 2.8 6.688030 

9 3.14 9.059432 
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Table 5.40  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.00n   

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.41  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 1.30n   

  

Configuration 
01.00and 0.01n    

0 (rad) w  

1 0.2 1.201347 

2 0.4 2.410405 

3 0.8 4.884283 

4 1.2 7.492987 

5 1.6 10.325674 

6 2.0 13.505593 

7 2.4 17.220623 

8 2.8 21.790002 

9 3.14 26.459706 

Configuration 
01.30and 0.01n    

0 (rad) w  

1 0.2 2.251925 

2 0.4 4.145347 

3 0.8 7.555952 

4 1.2 10.806230 

5 1.6 14.033920 

6 2.0 17.593188 

7 2.4 21.541696 

8 2.8 26.700222 

9 3.14 32.202834 
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As described above, most of them only mentioned the relationship of the load-

displacement curves ( 0 ). In the figure below, the relationship of the load-displacement 

curve ( 0.5n  ) for the nonlinearly cantilever beam between the follower distributed load

w  and the rotation angle 0  are demonstrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.51  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0.5n   

  

The load–displacement curves of the cantilever beam with various elastic 

material parameters 0  are plotted in Fig. 5.51. Displayed in this figure is the load–

displacement curves to play a major role in detailing the behavior of the cantilever beam 

for all three possible cases ( 0 0.001  , 0 0.01  , and 0 0.1  ) with 0.5n  .  

It is very interesting and remarkable that the three well-known load-

displacement curves are monotonic and stable. Furthermore, it is similar to the load-

displacement curves ( 0 ). As it can be seen from the Fig. 5.51, the follower distributed 

load w  increases as the rotation angle 0  increases.  
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Displayed in the figure below is the relationship of the load-displacement curve 

( 1.30n  ) for the nonlinearly cantilever beam between the follower distributed load w  

and the rotation angle 0  are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.52  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 1.30n   

  

The load–displacement curves of the cantilever beam with various elastic 

material parameters 0  are plotted in Fig. 5.52.The behaviors of the cantilever beam for 

all three possible cases ( 0 0.1  , 0 0.01  , and 0 0.001  ) with 1.30n   are described.  

It is very interesting that the follower distributed loads w  for elastic material 

parameters 0 0.001   with 1.30n   increase rapidly whereas the elastic material 

parameters 0 0.001   with 0.50n   grow gradually. However, it is remarkable from the 

Fig. 5.52 that the follower distributed load w  increases as the rotation angle 0  increases.  
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5.1.2 Case 2: 0andn  are related to each other 

 However, such mentioned expression of the constitutive relationship has 

one shortcoming–the stress gradient goes to infinity when the strain value reaches zero 

[38]. In our computation, we assume that the set of material parameters (i.e., 0 and n ) 

can be related to each other. Technically, the initial slopes of the stress-strain curves are 

utilized to obtain the relationship. Hence the initial slopes of the stress–strain curve can 

be achieved by differentiating Eq. (3.2) [   
1/

1/

0 0

n
nE      ]. After differentiating, 

it can be written as 

 
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 By setting 0  , Eq. (5.1) 
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Dividing Eq. (5.3) by Eq. (5.4), it can be obtained 

 
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Finally, the result gives 

1

0 .

n

nn




 
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 

  for 1n       (5.8) 
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Where the initial slope of the stress-strain curve in generalized Ludwick model 

is defined as E . For the example, if the initial slopes are given by 0.5E , E , and 2E , 

and the relationship between  1
0 2

n

nn  ,  1
0

n

nn  ,and  1
0 / 2

n

nn  , respectively. It 

should be noted that Eq. (5.8) does not valid for 1n  . If 1n  , 0  would set to be zero 

automatically. In our numerical experiments, the initial slopes are chosen to be 0.5E  and

2E , to show the difference between linear and nonlinear constitutive relationships. 

 

 

 

 

 

 

 

 

Figure 5.53  Comparison of stress–strain curve between linear and nonlinear  

        generalized Ludwick material 

 

 To point out the nonlinear constitutive relationships clearly and simply we have 

chosen the two following numerical examples, the rectangular cross-section of cantilever 

beam is subjected to several different follower distributed loads with the degree of 

material nonlinearity n . 

 The first case of the cantilever beam with non-dimensional geometric 

parameters 0.2mb  and 0.2mh  . The nonlinearity material parameters to determine 

are 1n  and  1
0 2

n

nn  . 

The second case of the cantilever beam with non-dimensional geometric 

parameters 0.2mb  and 0.2mh  . The nonlinearity material parameters to determine 

are 1n   and  1
0 / 2

n

nn  . 

 The first two tables below are illustrated the numerical results in sequence.  
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The result listed in Table 5.42 can be interpreted that when using 1n  , the 

rotation angle 0  and the follower distributed load w  are both increase their values. In 

contrast, Table 5.43 demonstrated that when applying 1n  , the rotation angle 0

successively increases with the follower distributed load w .  

 

Table 5.42  Numerical results for cantilever beam made of the generalized Ludwick         

                    nonlinear elastic material 1n   , 0.2mb  and 0.2mh   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0  

(rad)  

w  

 1
0 2

n

nn   

1.10n   1.20n   1.30n   1.45n   1.50n   

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.2 1.68619 2.00236 2.11785 2.17475 2.18264 

0.4 3.18441 3.72440 3.95424 4.07691 4.09360 

0.6 4.63272 5.34237 5.66153 5.83345 5.85515 

0.8 6.06606 6.91150 7.30042 7.50542 7.52825 

1.0 7.50603 8.46367 8.82720 9.13123 9.15278 

1.2 8.97021 10.02265 10.42959 10.71907 10.67532 

1.4 10.47533 11.60927 12.12867 12.27408 12.28291 

1.6 12.03887 13.24407 13.70155 13.82244 13.77604 

1.8 13.68047 14.94909 15.51492 15.91570 15.43175 

2.0 15.42334 16.74968 17.06725 17.21551 17.38962 

2.2 17.29611 18.67661 18.58015 19.37626 19.16765 

2.4 19.33549 20.76904 21.35352 21.12029 21.36808 

2.6 21.59041 23.07919 22.39006 23.37350 23.52711 

2.8 24.12888 25.68023 26.01780 24.79714 26.00898 

3.0 27.05016 28.51741 29.26955 25.78840 27.68192 

3.14 29.40196 31.10185 31.46138 31.33843 29.32568 
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Table 5.43  Numerical results for cantilever beam made of the generalized Ludwick  

    nonlinear elastic material 1n  , 0.2mb  and 0.2mh   

  

0  

(rad)  

w  

1

0
2

n

nn


 
  
 

 

0.55n   0.65n   0.75n   0.85n   0.95n   

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.2 0.57700 0.63391 0.64521 0.70084 0.98283 

0.4 1.32022 1.33252 1.36696 1.51303 2.04463 

0.6 2.06404 2.09450 2.15584 2.39894 3.15034 

0.8 2.87544 2.92139 3.00960 3.34930 4.29766 

1.0 3.82517 3.81699 3.92982 4.36308 5.49065 

1.2 4.52891 4.78707 4.92084 5.44362 6.73660 

1.4 5.61243 5.83952 5.98951 6.59744 8.04496 

1.6 6.88814 6.98461 7.14524 7.83399 9.42775 

1.8 7.61699 8.23546 8.40041 9.16593 10.90002 

2.0 9.69558 9.60880 9.77101 10.60975 12.48068 

2.2 11.33385 11.12606 11.27775 12.18684 14.19385 

2.4 12.90037 12.81505 12.94765 13.92525 16.07088 

2.6 14.87062 14.71242 14.81659 15.86234 18.15356 

2.8 17.02910 16.86767 16.70870 18.04921 20.49942 

3.0 19.89465 19.34963 19.27945 20.55803 23.19071 

3.14 19.97827 20.60874 21.33293 22.56080 25.34391 
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Furthermore, the relationship of the load-displacement curve for the nonlinearly 

cantilever beam between the follower distributed load w  and the rotational angle 0  are 

exhibited with the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.54  Load-displacement curve for the nonlinearly cantilever beam subjected to  

      follower distributed load 0.55n  , 1.00n  , and 1.30n   

 

  

Since the Ludwick-type constitutive law has one major shortcoming as 

mentioned before, the large deflection behavior of a cantilever beam obeying generalized 

Ludwick’s material model subjected to follower distributed load is discussed in this 

section. The load–displacement curves of the cantilever beam with various material 

nonlinearity parameters n  are plotted in Fig. 5.54.  

It is remarkable that a linear case 1n   (Fig. 5.54), the well-known load-

displacement curve is monotonic and stable as described in case 1. As it can be seen from 

the Fig 5.54, the follower distributed load w  increases as the rotation angle 0  increases.  

For the case of hardening material, where 1n   and 1n   (Fig. 5.54), the 

behaviors of the cantilever beam are similar to the linear case 1n  . 
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The equilibrium configurations for 0 1.2   and 0 2.0   are selected to 

indicate in the Fig. 5.55.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.55  Equilibrium configurations for 0 1.2   and 0 2.0   

 

In addition, the nonlinearity material parameter 0.55n  is selected to show the 

deflection configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.56  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 0.55n   with  1
0 0.5

n

nn   (Table 5.44)  
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Otherwise, the nonlinearity material parameter 1.30n  is chosen to demonstrate 

the deflection configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.57  Deflection configurations of the nonlinearly cantilever beam subjected to 

                     follower distributed load 1.30n   with  1
0 2

n

nn   (Table 5.45) 

 

 

As described in case 1, the deflected shapes with the same slope angle in the 

Fig. 5.56 and 5.57 are indistinguishable whether the nonlinearity material parameters are 

chosen with different values ( 0.55n  and 1.30n  ). It is remarkable that the follower 

distributed load w  increases as the rotation angle 0  increases. 

Their deflection configuration results are displayed in Table 5.44 and 5.45, 

respectively. 
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Table 5.44  Numerical results for cantilever beam made of the generalized Ludwick  

                    material for 0.55n   

 

Table 5.45  Numerical results for cantilever beam made of the generalized Ludwick 

                    material for 1.30n   

  

Configuration 
 1

00.55and 0.5
n

nn n    

0 (rad) w  

1 0.2 0.57700 

2 0.4 1.32022 

3 0.8 2.87544 

4 1.2 4.52891 

5 1.6 6.88814 

6 2.0 9.69558 

7 2.4 12.90037 

8 2.8 17.02910 

9 3.14 19.97827 

Configuration 
 1

01.30and 2
n

nn n    

0 (rad) w  

1 0.2 2.11785 

2 0.4 3.95424 

3 0.8 7.30042 

4 1.2 10.42959 

5 1.6 13.70155 

6 2.0 17.06725 

7 2.4 21.35352 

8 2.8 26.01780 

9 3.14 31.46138 
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 Displayed in the figures below are an explanation of stress–strain relationships 

for generalized Ludwick constitutive law by setting the initial slopes 0.5E , E , and 2E , 

with the three conditions of the supplementary parameter  1
0 2

n

nn  ,  1
0

n

nn  , and 

 1
0 / 2

n

nn  , respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.58  Stress–strain relationships in tensile domain for generalized Ludwick 

 

 

 

 

 

 

 

 

 

Figure 5.59  Stress–strain relationships (adjusted scale) in tensile domain for  

      generalized Ludwick 
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5.1.3  Effects of the dimension of the cross-section 

Furthermore, the Fig. 5.60 and 5.61 are illustrated the effects of changing 

the dimensions of the cross-section ( 0.1 0.2mb   and 0.1 0.2mh   ) in the 

relationships of the load-displacement curves n=0.5 with varying 0 0.001   and 

0 0.002   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.60  Load-displacement for the nonlinearly cantilever beam subjected to 

                     follower distributed load 0 0.001   and 0.50n   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.61  Load-displacement for the nonlinearly cantilever beam subjected to 

                     follower distributed load 0 0.002   and 0.50n   
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Otherwise, the Fig. 5.62 and 5.63 are revealed the effects of changing the 

dimensions of the cross-section ( 0.1 0.2mb   and 0.1 0.2mh   ) in the relationships 

of the load-displacement curves 1.30n   with varying 0 0.001   and 0 0.002   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.62  Load-displacement for the nonlinearly cantilever beam subjected to 

                     follower distributed load 0 0.001   and 1.30n   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.63  Load-displacement for the nonlinearly cantilever beam subjected to 

                     follower distributed load 0 0.002   and 1.30n   
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As displayed in the Fig. 5.60, 5.61, 5.62, and 5.63, it is worth noting that when 

varying the width of the cross-section (b ), there is no effect to the behavior of the beam 

since the width (b ) is canceled in Eq. (3.18). However, the height ( h ) influences to the 

behavior of the beam where the stiffness of the beam increases as the height ( h ) 

increases. 



CHAPTER 6 

CONCLUSIONS 

 

6.1  Conclusions 

In the presented study the large deflection behavior of the cantilever beam 

subjected to follower distributed load where material of the cantilever beam obeys the 

generalized Ludwick’s constitutive law is investigated. Both geometrical and material 

nonlinearities are relevant to this problem since the material of the cantilever beam is 

assumed to be nonlinearly elastic. This can be surpassed in a three-parametric generalized 

Ludwick’s material model which is described and applied in this study of large deflections 

of cantilever beam. Since the governing equations were highly nonlinear differential 

equations, the closed-form solutions are in general impossible. Otherwise, the cantilever 

beam problem has been solved numerically by the shooting method. We also have 

generated an exact moment-curvature formula for materials which obey the generalized 

Ludwick’s law.  

Several numerical examples were selected to demonstrate the influence of the 

geometry and configurations of the beam, loading conditions, and constitutive law of the 

material on the deflection behavior of the discussed cantilever beam. Most of the load-

deflection curves revealed in chapter 5 are monotonic and stable.  

From a practical standpoint, results obtained in this research study illustrate the 

effects of the generalized Ludwick’s model. It can be concluded as the following.   

 6.1.1  The effects of nonlinearity materials on the large deflection behavior of a 

cantilever beam obeying generalized Ludwick’s material model subjected to follower 

distributed load are divided the set of parameters 
0 andn  into two cases. The first case 

is 
0andn  are varied independently. Second one is 

0andn  are related to each other. 

6.1.2  In case 1 with cross-sectional area 0.2mb  and 0.2mh  , numerical 

results with material nonlinearity parameters 
0  ranging from 0.001 to 0.003 and n

varying from 0.50,0.75..2.00  reveal that the follower distributed load increases as the 

rotational angles goes up. On the other hand, the follower distributed load decreases while 

employing 
0(0.004 0.008)   with specifying the value of n  at 0.75 and 2.00. However, 

it is very interesting to take a note that the follower distributed loads and the rotational 

angles are both rising their values if taking a look at value of n  individually.    
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6.1.3  In case 2 with cross-sectional area 0.2mb  and 0.2mh  , specifying the 

material nonlinearity parameters 1n  and  1
0 2

n

nn  , its numerical results (Table 5.42) 

demonstrated that the follower distributed loads and the rotational angles both increase in 

their values from 1.10n   to 1.50n  . Interestingly, at the value of the rotational angle 

0 3.14   founded that 1.20n  , 1.30n  , and 1.45n   obtained close values of 

follower distributed loads 31.10185, 31.46138, and 31.33843, respectively. Moreover, by 

further employing the material nonlinearity parameters 1n  and  1
0 0.5

n

nn  , numerical 

results (Table 5.43) illustrated that the follower distributed loads and the rotational angles 

both increase for all the values of n .  

 

6.2  Suggestions 

This research study is believed that it is the first research that solve the problem 

of the large deflection behavior of the cantilever beam subjected to follower distributed 

load where material of the cantilever beam obeys the generalized Ludwick’s constitutive 

law and the effect of nonlinearity materials on large deflection behavior of the beam 

obeying generalized Ludwick’s constitutive law. Thus in this research study can be 

developed for other applications as below.  

6.2.1  According to presented study only dealt with the rectangular cross-section 

of cantilever beam. For further research study can be handled the variety cross-sectional 

shapes with varying longitudinal shape subjected to follower distributed load in which 

more numerical effort is necessary.  

6.2.2  The computational program Matlab may be upgraded more program 

codes to carry out the numerical results more successively. As in case 2 (
0andn  are 

related to each other), the computational process cannot go through while specifying the 

values of the nonlinearly parameter n greater than 1.80.  

6.2.3  The material employing in this research study is a material where stress-

strain relationship obeys the generalized Ludwick’s constitutive law. One more 

nonlinearly material can be established for further research on the large deflection 

behavior of the cantilever beam subjected to follower distributed load is Ramberg-

Osgood’s Material. 

 

What is more, the recent findings from this study will benefit the analysis and 

design of the practical problems. This hands out as a benchmark for future experimental 

investigations as well. 
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RUNGE–KUTTA METHODS 
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 Runge–Kutta (RK) methods can be acquired by employing the accuracy of a 

Taylor series approach without requiring the higher derivatives computation.  

 1 , ,i i i iy y x y h h        (A.1) 

where  , ,i ix y h  is called an increment function, which can be illustrated as a represent-

tative slope over the interval. In general, the increment function is given as 

 
1 1 2 2 n na k a k a k          (A.2) 

where the a ’s are constant and the k ’s are 

 
1 ( , )i ik f x y       (A.2a) 

 
2 1 11 1( , )i ik f x p h y q k h        (A.2b) 

 
3 2 21 1 22 2( , )i ik f x p h y q k h q k h        (A.2c) 

  . 

  . 

  . 

 1 1,1 1 1,2 2 1, 1 1( , )n i n i n n n n nk f x p h y q k h q k h q k h            (A.2d) 

where the p ’s and q ’s are constants. Notice that the k ’s are recurrence relationships. 

That is, , 1,2,3,...,ik i n . The most popular RK methods are fourth order. The most 

commonly used form, namely the classical fourth-order RK method can be summarized 

as below. 

  1 1 2 3 4

1
2 2

6
i iy y k k k k h          (A.3) 

where  

 
1 ( , )i ik f x y       (A.3a) 

 2 1

1 1
,

2 2
i ik f x h y k h

 
   

 
     (A.3b) 

 3 2

1 1
,

2 2
i ik f x h y k h

 
   

 
     (A.3c) 

 4 3,i ik f x h y k h        (A.3d) 

For more details of this Runge–Kutta methods, be able to learn more from [39] 
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NEWTON–RAPHSON METHOD 
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 The Newton-Raphson equation (Fig B.1) is employed to the usage of root-

locating formulas. If the initial guess at the root is 
ix , a tangent is supposed to extend 

from the point  ,i ix f x   . The point where the x  axis usually reveals an improved 

estimate of the root.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1  Graphical depiction of the Newton-Raphson method 

                    (Chapra Canale 2009. Numerical Methods for Engineers, 6th Edition) 

 

A method relied on the Taylor series is applied to describe the behavior of the 

calculation of the Newton-Raphson method. As in Fig B.1, the first derivative at x  is 

equivalent to the slope: 

'

1

( ) 0
( ) i

i

i i

f x
f x

x x 





      (B.1) 

which can be rearranged to yield  

1 '

( )

( )

i
i i

i

f x
x x

f x
         (B.2) 

which is called the Newton-Raphson formula. 
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 Recall from the Taylor series expansion can be represented as  

 
 

 
''

2'

1 1 1( ) ( ) ( )( )
2!

i i i i i i i

f
f x f x f x x x x x


         (B.3) 

where   lies somewhere in the interval from 
ix  to 

1ix 
. An approximate version is 

obtainable by truncating the series after the first derivative term: 

 
'

1 1( ) ( ) ( )( )i i i i if x f x f x x x        (B.4) 

 
'

10 ( ) ( )( )i i i if x f x x x        (B.5) 

which can be solved for  

  1 '

( )

( )

i
i i

i

f x
x x

f x
    

which is identical to Eq. (B.2). Apart from the derivation, the Taylor series can also be 

established to estimate the error of the formula. For this situation
1i ix x  , where x  is the 

true value of the root. Substituting this value along with ( ) 0rf x   into Eq. (B.3) yields 

 
 

 
''

2'0 ( ) ( )( )
2!

i i r i r i

f
f x f x x x x x


        (B.6) 

 Equation (B.5) can be subtracted from Eq. (B.6) to give 

 
 

 
''

2'

10 ( )( )
2!

i r i r i

f
f x x x x x


       (B.7) 

 Now, realize that the error is equal to the discrepancy between 
1ix 
 and the true 

value 
rx , as in  

 , 1 1t i r iE x x    

and Eq. (B.7) can be expressed as 

  
 ''

' 2

, 1 ,0 ( )
2!

i t i t i

f
f x E E


      (B.8) 

  
 ''

2

, 1 ,'2 ( )

r

t i t i

r

f x
E E

f x



     (B.9) 

For more details of this Newton-Raphson method, be able to learn more from [39] 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

SHOOTING METHOD 
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 Shooting method is a method dealing with the equations where the integration 

proceeds from
1x to

2x , and we try to match boundary conditions at the end of the 

integration (Fig C.1). Newton-Raphson method plays important role to carry out this 

problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1  Shooting method 

                    (Numerical recipes in FORTRAN: The art of scientific computing) 

 

1. At the starting point 
1x  there are N starting values 

iy  to be specified, but subjected 

to 
1n  conditions. Therefore 

2 1n N n   is the starting values.  And a vector V is 

equaled to
2 1n x . It can be written as below. 

21 1 1( ) ( ; ,..., )i i ny x y x V V  1,...,i N    (C.1) 

2. Start integrating the ODEs from 
1x  to 

2x  at point 
2x  and it can find the 

differences between the integrating values and boundary conditions at
2x . Now, 

at
2x , let us define a discrepancy vector F  which equals to 

2 1n x  the same as 

vectorV . 

3. Newton-Raphson is proposed to solve the problem by finding a vector value of V  

that zeros the vector value of F . 
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new oldV V V        (C.2) 

J V F         (C.3) 

The Jacobian matrix J  has components given by 

i
ij

j

F
J

V





       (C.4) 

It is not feasible to make a computation these partial derivatives analytically.  

For more details of this shooting method, be able to learn more from [40] 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

COMPUTATIONAL PROGRAM 
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 The first case is 0andn  are varied independently.  

cantilever_self 

function cantilever_self 
% cantilever beam with follower self-weight  
clear 
global ceta0 pl b h n E0  

  
format long 

  
b=input('Width (b) '); 

  
h=input('Height (h) '); 

  
n=input('Degree of material nonlinearity (n) '); 

  
E0=input('Degree of material nonlinearity (E0) '); 

  
ceta0=input('End rotation '); 

  
v(1)=input('Distributed load (w) '); 

  
pl=input('Plot configuration shapes (yes (1), no (0))= '); 

  
P=v(1); 

  
lim=input('Limitation= '); 

 
inc=input('Increment= '); 
fid=fopen('Output_follower_generalized Ludwick.txt','wt'); 

 
fprintf(fid,'Output of follower self-weight cantilever beam obeying 

generalized Ludwick\n'); 

 
fprintf(fid,'ceta0            w \n'); 

 
i=0; 

 
dv=0.0001; 

  
while (ceta0<lim) 
    v0=[v(1)]; 

 
    options=optimset(optimset('fsolve'),'MaxFunEvals',400,'TolFun',1e-

15,'TolX',1.0e-15); 

 
    [v fval]=fsolve('score_canfollower',v0,options) 
    test=max(abs(fval)); 

 
while (test>1.0e-8&&i<25) 
    i=i+1; 
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    v(1)=v(1)+dv;  

 
    v0=[v(1)]; 

 
    [v fval]=fsolve('score_canfollower',v0,options) 
end 

  
fprintf(fid,'%12.9f                  %12.9f                 

%12.9f\n',ceta0,v(1),test); 

 
ceta0=ceta0+inc 

 
end 

  

        
fclose(fid) 
end 

 

 

goveqs_follower_self   

function dydx=goveqs_follower_self(x,y) 
global w b h n E0 
dydx=zeros(6,1); 

  
A=(((abs(y(3)))*h)/2)*(n+1)*(((((abs(y(3)))*h)/2)+E0)^(1/n))*h; 

 
A1=((abs(y(3)))^2)*((2*n)+1); 

 
B=n*E0*(((((abs(y(3))*h))/2)+E0)^(1/n))*h; 

 
B1=((abs(y(3)))^2)*((2*n)+1); 

 
C=n*(((((abs(y(3)))*h)/2)+E0)^((n+1)/n))*h; 

 
C1=((abs(y(3)))^2)*((2*n)+1); 

 
D=4*(n^2)*E0*(((((abs(y(3)))*h)/2)+E0)^((n+1)/n)); 

 
D1=((abs(y(3)))^3)*((2*n)+1)*(n+1); 

 
E=4*(n^2)*(E0^((2*n+1)/n)); 

 
E1=((abs(y(3)))^3)*((2*n)+1)*(n+1); 

  
Io=(b*(h^3))/12; 

 
Ink=b*((A/A1)-(B/B1)-(C/C1)+(D/D1)-(E/E1));  
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dydx(1)=w*sin(y(4));              % Horizontal force (H) 

 
dydx(2)=w*cos(y(4));              % Normal force (V) 

 
dydx(3)=(((-y(2)*cos(y(4)))-(y(1)*sin(y(4))))*Io)/Ink;  % Curvature 

 
dydx(4)=y(3);                     % Ceta 

 
dydx(5)=cos(y(4));                % x 

 
dydx(6)=sin(y(4));                % y 

  
end 

 

 

score_canfollower 

function r=score_canfollower(v) 
global ceta0 w pl b h n E0 

 
r=zeros(1,1); 

 
w=v(1); 

  
curv=1.0e-5; 

 
odeoptions=odeset('RelTol',1.0e-5,'AbsTol',1.0e-5); 

 
[x y]=ode45('goveqs_follower_self',[0 1],[0 0 curv ceta0 0 

0],odeoptions); 

  
lastrow=size(y,1); 

  
if (pl==1) 
    figure(1) 
    hold on; 

 
    title ('Equilibrium shape'); 

 
    plot(y(:,5),y(:,6)); 

 
    axis on; 

 
    axis equal; 

 
    grid on; 

 
end 
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r(1)=y(lastrow,4); 

  

  
end 

 

 

The second case is 0andn  are related to each other.  

For n<1 

cantilever_self 

function cantilever_self 
% cantilever beam with follower self-weight  
clear 
global ceta0 pl b h n E0  

  
format long 

  
b=input('Width (b) '); 

  
h=input('Height (h) '); 

  
n=input('Degree of material nonlinearity (n) '); 

  
E0=(n/2)^(n/(1-n));     % Good for n<1 

  
ceta0=input('End rotation '); 

  
v(1)=input('Distributed load (w) '); 

  
pl=input('Plot configuration shapes (yes (1), no (0))= '); 

  
P=v(1); 

  
lim=input('Limitation= '); 

 
inc=input('Increment= '); 
fid=fopen('Output_follower_generalized Ludwick.txt','wt'); 

 
fprintf(fid,'Output of follower self-weight cantilever beam obeying 

generalized Ludwick\n'); 

 
fprintf(fid,'ceta0            w \n'); 

 
i=0; 

 
dv=0.0001; 

  
while (ceta0<lim) 
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    v0=[v(1)]; 

 
    options=optimset(optimset('fsolve'),'MaxFunEvals',400,'TolFun',1e-

15,'TolX',1.0e-15); 

 
    [v fval]=fsolve('score_canfollower',v0,options) 
    test=max(abs(fval)); 

 
while (test>1.0e-8&&i<25) 
    i=i+1; 

 
    v(1)=v(1)+dv;  

 
    v0=[v(1)]; 

 
    [v fval]=fsolve('score_canfollower',v0,options) 
end 

  
fprintf(fid,'%12.9f                  %12.9f                 

%12.9f\n',ceta0,v(1),test); 

 
ceta0=ceta0+inc 

 
end 

  

        
fclose(fid) 
end 

 

 

goveqs_follower_self   

function dydx=goveqs_follower_self(x,y) 
global w b h n E0 
dydx=zeros(6,1); 

  
A=(((abs(y(3)))*h)/2)*(n+1)*(((((abs(y(3)))*h)/2)+E0)^(1/n))*h; 

 
A1=((abs(y(3)))^2)*((2*n)+1); 

 
B=n*E0*(((((abs(y(3))*h))/2)+E0)^(1/n))*h; 

 
B1=((abs(y(3)))^2)*((2*n)+1); 

 
C=n*(((((abs(y(3)))*h)/2)+E0)^((n+1)/n))*h; 

 
C1=((abs(y(3)))^2)*((2*n)+1); 

 
D=4*(n^2)*E0*(((((abs(y(3)))*h)/2)+E0)^((n+1)/n)); 
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D1=((abs(y(3)))^3)*((2*n)+1)*(n+1); 

 
E=4*(n^2)*(E0^((2*n+1)/n)); 

 
E1=((abs(y(3)))^3)*((2*n)+1)*(n+1); 

  
Io=(b*(h^3))/12; 

 
Ink=b*((A/A1)-(B/B1)-(C/C1)+(D/D1)-(E/E1));  

  

  
dydx(1)=w*sin(y(4));              % Horizontal force (H) 

 
dydx(2)=w*cos(y(4));              % Normal force (V) 

 
dydx(3)=(((-y(2)*cos(y(4)))-(y(1)*sin(y(4))))*Io)/Ink;  % Curvature 

 
dydx(4)=y(3);                     % Ceta 

 
dydx(5)=cos(y(4));                % x 

 
dydx(6)=sin(y(4));                % y 

  
end 

 

 

score_canfollower 

function r=score_canfollower(v) 
global ceta0 w pl b h n E0 

 
r=zeros(1,1); 

 
w=v(1); 

  
curv=1.0e-5; 

 
odeoptions=odeset('RelTol',1.0e-5,'AbsTol',1.0e-5); 

 
[x y]=ode45('goveqs_follower_self',[0 1],[0 0 curv ceta0 0 

0],odeoptions); 

  
lastrow=size(y,1); 

  
if (pl==1) 
    figure(1) 
    hold on; 

 
    title ('Equilibrium shape'); 

 
    plot(y(:,5),y(:,6)); 
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    axis on; 

 
    axis equal; 

 
    grid on; 

 
end 

     

  
r(1)=y(lastrow,4); 

  

  
end 

 

 

For n>1 

cantilever_self 

function cantilever_self 
% cantilever beam with follower self-weight  
clear 
global ceta0 pl b h n E0  

  
format long 

  
b=input('Width (b) '); 

  
h=input('Height (h) '); 

  
n=input('Degree of material nonlinearity (n) '); 

  
E0=(2n)^(n/(1-n));     % Good for n>1 

  
ceta0=input('End rotation '); 

  
v(1)=input('Distributed load (w) '); 

  
pl=input('Plot configuration shapes (yes (1), no (0))= '); 

  
P=v(1); 

  
lim=input('Limitation= '); 

 
inc=input('Increment= '); 
fid=fopen('Output_follower_generalized Ludwick.txt','wt'); 

 
fprintf(fid,'Output of follower self-weight cantilever beam obeying 

generalized Ludwick\n'); 



136 

 
fprintf(fid,'ceta0            w \n'); 

 
i=0; 

 
dv=0.0001; 

  
while (ceta0<lim) 
    v0=[v(1)]; 

 
    options=optimset(optimset('fsolve'),'MaxFunEvals',400,'TolFun',1e-

15,'TolX',1.0e-15); 

 
    [v fval]=fsolve('score_canfollower',v0,options) 
    test=max(abs(fval)); 

 
while (test>1.0e-8&&i<25) 
    i=i+1; 

 
    v(1)=v(1)+dv;  

 
    v0=[v(1)]; 

 
    [v fval]=fsolve('score_canfollower',v0,options) 
end 

  
fprintf(fid,'%12.9f                  %12.9f                 

%12.9f\n',ceta0,v(1),test); 

 
ceta0=ceta0+inc 

 
end 

  

        
fclose(fid) 
end 

 

 

goveqs_follower_self   

function dydx=goveqs_follower_self(x,y) 
global w b h n E0 
dydx=zeros(6,1); 

  
A=(((abs(y(3)))*h)/2)*(n+1)*(((((abs(y(3)))*h)/2)+E0)^(1/n))*h; 

 
A1=((abs(y(3)))^2)*((2*n)+1); 

 
B=n*E0*(((((abs(y(3))*h))/2)+E0)^(1/n))*h; 
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B1=((abs(y(3)))^2)*((2*n)+1); 

 
C=n*(((((abs(y(3)))*h)/2)+E0)^((n+1)/n))*h; 

 
C1=((abs(y(3)))^2)*((2*n)+1); 

 
D=4*(n^2)*E0*(((((abs(y(3)))*h)/2)+E0)^((n+1)/n)); 

 
D1=((abs(y(3)))^3)*((2*n)+1)*(n+1); 

 
E=4*(n^2)*(E0^((2*n+1)/n)); 

 
E1=((abs(y(3)))^3)*((2*n)+1)*(n+1); 

  
Io=(b*(h^3))/12; 

 
Ink=b*((A/A1)-(B/B1)-(C/C1)+(D/D1)-(E/E1));  

  

  
dydx(1)=w*sin(y(4));              % Horizontal force (H) 

 
dydx(2)=w*cos(y(4));              % Normal force (V) 

 
dydx(3)=(((-y(2)*cos(y(4)))-(y(1)*sin(y(4))))*Io)/Ink;  % Curvature 

 
dydx(4)=y(3);                     % Ceta 

 
dydx(5)=cos(y(4));                % x 

 
dydx(6)=sin(y(4));                % y 

  
end 

 

 

score_canfollower 

function r=score_canfollower(v) 
global ceta0 w pl b h n E0 

 
r=zeros(1,1); 

 
w=v(1); 

  
curv=1.0e-5; 

 
odeoptions=odeset('RelTol',1.0e-5,'AbsTol',1.0e-5); 

 
[x y]=ode45('goveqs_follower_self',[0 1],[0 0 curv ceta0 0 

0],odeoptions); 

  
lastrow=size(y,1); 
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if (pl==1) 
    figure(1) 
    hold on; 

 
    title ('Equilibrium shape'); 

 
    plot(y(:,5),y(:,6)); 

 
    axis on; 

 
    axis equal; 

 
    grid on; 

 
end 

     

  
r(1)=y(lastrow,4); 

  

  
end 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E 

EQUILIBRIUM EQUATIONS OF BEAM SEGMENT 
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Figure E.1  Free-body diagram of an infinitesimal element of the beam 

 

 

 

 

 

 

 

Figure E.2  Geometric relationship of beam element 
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Summation of forces in Y direction 

0yF     

   cos 0V dV V wds      

  cos 0
dV

w
ds

   

  cos
dV

w
ds

       (E.1) 

 

Summation of forces in X direction 

0xF    

   sin 0H dH H wds      

                   sin 0
dH

w
ds

   

  sin
dH

w
ds

      (E.2) 

 

Taking moment about point 0 

0 0M    

  0M dM M Vdx Hdy       

  0dM Vdx Hdy      sin
dy

ds
 , cos

dx

ds
  

  cos sin 0
dM

V H
ds

      

   cos sin
dM

V H
ds

         (E.3) 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX F 

 THE INNER BENDING MOMENT–CURVATURE RELATIONSHIP 

OF GENERALIZED LUDWICK MATERIAL 
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 As well-known the inner bending moment acting at any cross-section of the 

beam can be expressed with normal stress   (Fig 3.6) can be written as 

A

M ydA        (F.1) 

1 1
y y y  



           (F.2) 

 
1/ 1/

0 0

n nE       
 

     (F.3) 

Let dA bdy  be the infinitesimal cross-sectional area of the beam. Furthermore, 

employing the expression of normal strain-curvature y   ; hence 

 
1/ 1/

0 0

n n

A

M E ydA     
       (F.4) 

 
/2 1/ 1/

0 0
0

2 ,
h n nM bE y ydy dA bdy      
     (F.5) 

After some works, the inner bending moment for generalized Ludwick’s 

material model can illustrated as below. 

 
     

2 1 11
2

02 0 0
0 2

1 2
2
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nn
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M bE n
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   
 

  

  
                      

         (F.6) 

where the curvature 
1




  

Finally, the inner bending moment for generalized Ludwick’s material model 

can be written as, 

 
     
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 

 
                  

            (F.7) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX G 

 MOMENT DIFFERENTIATION OF GENERALIZED LUDWICK 

MATERIAL 
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 
     
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 (G.1) 

By differentiating the above equation once with respect to the arc length s  the 

result gives: 

Let 
 
  
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             (G.2) 

Finally, the differentiation of the inner bending moment can be written as below. 

n

dM d
EbI

ds ds



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Table H.1  Numerical results for nonlinear elastic material: 0 0.001   and n  varying     

    from 0.50,0.75..2.00  with 0.1mb  and 0.1mh   

  

0  

(rad) 

w  

0 0.001   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015000 0.290368 1.201348 4.010447 6.341726 5.790828 

0.4 0.054370 0.704797 2.410405 7.542403 9.398551 8.154448 

0.6 0.118527 1.197721 3.635229 10.157444 12.348522 10.346395 

0.8 0.208369 1.756490 4.884284 12.555389 14.947794 18.833779 

1.0 0.325200 2.376914 6.166776 14.833826 18.435452 21.566774 

1.2 0.470793 3.059041 7.492988 17.053081 20.975275 24.149175 

1.4 0.647440 3.805827 8.874687 19.257990 23.378385 26.657428 

1.6 0.858057 4.622715 10.325675 21.487059 25.773683 29.149182 

1.8 1.106321 5.517661 11.862520 23.777576 28.235506 31.676120 

2.0 1.396849 6.501467 13.505593 26.169533 30.782183 34.290765 

2.2 1.735451 7.588447 15.280556 28.709592 33.477402 37.052364 

2.4 2.129486 8.797498 17.220624 31.456335 36.388528 40.034934 

2.6 2.588367 10.153790 19.370067 34.393770 39.608679 43.334521 

2.8 3.124305 11.691354 21.790003 36.973874 43.149206 44.765846 

3.0 3.753406 13.457417 24.568444 41.912184 47.564648 51.584895 

3.14 4.260574 14.865093 26.648829 44.401270 50.681183 55.351383 
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Table H.2  Numerical results for nonlinear elastic material: 0 0.002   and n  varying     

    from 0.50,0.75..2.00  with 0.1mb  and 0.1mh   

  

0  

(rad) 

w  

0 0.002   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.017791 0.309401 1.201348 4.020639 5.669596 7.202317 

0.4 0.060207 0.734115 2.410405 7.026639 9.450766 11.437753 

0.6 0.127510 1.234914 3.635229 9.624466 12.496705 14.814591 

0.8 0.220584 1.800344 4.884284 11.773046 15.216440 17.762188 

1.0 0.340752 2.426721 6.166776 14.379966 17.749692 20.479455 

1.2 0.489798 3.114370 7.492988 16.583404 20.179189 22.895321 

1.4 0.670044 3.866431 8.874687 18.774095 22.596362 25.508308 

1.6 0.884437 4.688489 10.325675 20.989692 23.813440 27.281550 

1.8 1.136695 5.588611 11.862520 23.266849 27.366717 30.486113 

2.0 1.431481 6.577714 13.505593 25.644934 29.902766 33.078881 

2.2 1.774669 7.670270 15.280556 28.169941 32.506459 35.814367 

2.4 2.173696 8.885290 17.220624 30.899580 35.473010 38.816890 

2.6 2.638076 10.248064 19.370067 33.910809 37.666375 42.061798 

2.8 3.180153 11.792989 21.790003 37.313179 40.639125 45.755448 

3.0 3.816234 13.567821 24.568444 40.707504 46.432039 50.163214 

3.14 4.328927 14.982666 26.498360 42.498190 49.672377 53.851176 
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Table H.3  Numerical results for nonlinear elastic material: 0 0.003   and n  varying     

    from 0.50,0.75..2.00  with 0.1mb  and 0.1mh   

  

0  

(rad) 

w  

0 0.003   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.020488 0.325339 1.201348 4.022923 3.611590 3.959431 

0.4 0.065868 0.759449 2.410405 6.882631 8.974675 10.757654 

0.6 0.136255 1.267601 3.635229 9.316591 11.965383 14.078255 

0.8 0.232514 1.839312 4.884284 11.785340 14.664244 16.989371 

1.0 0.355972 2.471325 6.166776 14.032773 17.174258 19.752742 

1.2 0.508432 3.164217 7.492988 15.998408 19.584316 22.199087 

1.4 0.692239 3.921296 8.804081 18.129202 21.591380 24.768603 

1.6 0.910373 4.748273 10.325672 18.847533 24.213592 27.087118 

1.8 1.166588 5.653337 11.388147 22.867709 26.708178 29.454896 

2.0 1.465596 6.647517 13.504880 25.233443 29.252293 32.180448 

2.2 1.813331 7.745371 14.913749 27.745234 31.769349 34.613222 

2.4 2.217306 8.966077 17.220860 30.460081 34.428948 37.673361 

2.6 2.687138 10.335144 19.132572 33.453904 37.814943 40.242660 

2.8 3.235307 11.887141 21.406614 36.421550 41.300311 43.874641 

3.0 3.878308 13.670188 24.348142 39.660934 44.788456 49.081673 

3.14 4.396479 15.091769 26.795345 43.594273 46.092712 52.726481 
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Table H.4  Numerical results for nonlinear elastic material: 0 0.004   and n  varying     

    from 0.50,0.75..2.00  with 0.1mb  and 0.1mh   

  

0  

(rad) 

w  

0 0.004   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.023125 0.339355 1.201348 3.324448 0.062500 5.949265 

0.4 0.068399 0.782206 2.410405 6.235538 0.062509 9.065929 

0.6 0.144825 1.297311 3.635229 7.604717 0.062495 12.401670 

0.8 0.244224 1.875019 4.884284 11.517886 3.062505 14.544262 

1.0 0.370934 2.512451 6.166776 13.634229 16.572473 19.049177 

1.2 0.526774 3.210407 7.492988 15.916156 17.649450 21.327546 

1.4 0.714109 3.972343 8.804099 17.310845 20.603599 23.515944 

1.6 0.935951 4.804089 10.325621 19.165196 20.603721 26.293839 

1.8 1.196090 5.713935 11.234824 22.516161 21.603729 28.581260 

2.0 1.499287 6.713012 13.238082 23.391670 24.096985 31.415408 

2.2 1.851533 7.815989 15.130891 24.828234 28.928718 34.140064 

2.4 2.260420 9.042174 16.861645 30.160362 31.730973 36.644558 

2.6 2.735664 10.417245 19.275391 32.075747 33.518426 40.264548 

2.8 3.289878 11.976005 21.747189 32.744342 40.773986 43.821888 

3.0 3.939748 13.766917 24.120582 34.573231 43.242870 48.338019 

3.14 4.463356 15.194941 26.153585 37.136708 45.602538 51.775780 
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Table H.5  Numerical results for nonlinear elastic material: 0 0.005   and n  varying     

    from 0.50,0.75..2.00  with 0.1mb  and 0.1mh   

  

0  

(rad) 

w  

0 0.005   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.025722 0.352008 1.201348 3.658263 4.216660 4.240152 

0.4 0.076852 0.803078 2.410405 5.962256 7.323723 9.786189 

0.6 0.153259 1.324809 3.635229 8.972874 10.574056 10.904268 

0.8 0.255761 1.908274 4.884284 11.170287 13.809668 15.366486 

1.0 0.385688 2.550932 6.166776 13.165342 16.319354 18.278525 

1.2 0.544874 3.253784 7.492988 15.655592 18.652920 20.352915 

1.4 0.735707 4.020427 8.874687 17.576835 20.891037 23.357759 

1.6 0.961227 4.856803 10.325675 19.997745 23.174255 25.156561 

1.8 1.225261 5.771293 11.862520 22.233420 25.739202 26.847226 

2.0 1.532617 6.775127 13.505593 24.574980 27.996658 30.093181 

2.2 1.889344 7.883076 15.280556 26.594842 30.813140 33.129506 

2.4 2.303109 9.114574 17.220624 29.734910 33.222446 35.976553 

2.6 2.783728 10.495462 19.370067 32.663465 36.587291 39.071912 

2.8 3.343949 12.060765 21.790003 35.824064 39.358905 43.182714 

3.0 4.000641 13.859271 24.290324 39.208893 42.493061 47.439855 

3.14 4.529649 15.293505 26.459706 41.820581 43.633979 49.839885 
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Table H.6  Numerical results for nonlinear elastic material: 0 0.001   and n  varying     

    from 0.50,0.75..2.00  with 0.02mb  and 0.02mh   

 

 

 

 

 

 

0  

(rad) 

w  

0 0.001   

0.50n   0.75n   1.00n   1.50n   1.75n   2.00n   

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.005144 0.205856 1.201348 6.251503 0.062520 0.827898 

0.4 0.015370 0.469643 2.410405 10.672172 0.062526 12.328170 

0.6 0.030652 0.774753 3.635229 15.163382 5.562525 14.328154 

0.8 0.051152 1.115965 4.884284 19.019776 6.562518 18.328155 

1.0 0.077138 1.491794 6.166776 22.903679 18.986234 21.330686 

1.2 0.108975 1.902825 7.492988 26.319076 25.221127 46.895326 

1.4 0.147141 2.351162 8.874687 27.328745 28.731695 52.054761 

1.6 0.192245 2.840279 10.325675 29.976863 29.115918 57.404022 

1.8 0.245052 3.375081 11.862520 31.324495 33.596467 61.498239 

2.0 0.306523 3.962137 13.505593 37.343051 38.179301 68.311802 

2.2 0.377869 4.610085 15.280556 44.829100 43.179302 72.451607 

2.4 0.460622 5.330284 17.220624 50.364028 54.837547 81.344976 

2.6 0.556746 6.137793 19.370067 54.879842 73.489961 85.581895 

2.8 0.668790 7.053178 21.533413 60.456690 78.647711 89.049600 

3.0 0.800128 8.104950 24.426660 62.901893 81.148896 98.532986 

3.14 0.905930 8.943696 25.949330 63.930677 92.635957 103.878540 
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รศ.ดร.วรีะศกัด์ิ ลิขิตเรืองศิลป์ จุฬาลงกรณ์มหาวทิยาลยั   

ศ.ดร.สุเชษฐ ์ลิขิตเลอสรวง จุฬาลงกรณ์มหาวทิยาลยั   

ผศ.ดร.ธเนศ ศรีศิริโรจนากร จุฬาลงกรณ์มหาวทิยาลยั   

รศ.ดร.จิตติชยั รุจนกนกนาฎ จุฬาลงกรณ์มหาวทิยาลยั   

รศ.ดร.เกษม ชูจารุกลุ จุฬาลงกรณ์มหาวทิยาลยั   

รศ.ดร.ศกัด์ิสิทธ์ิ เฉลิมพงศ ์ จุฬาลงกรณ์มหาวทิยาลยั   

ผศ.ดร.นพดล จอกแกว้ จุฬาลงกรณ์มหาวทิยาลยั   
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ผศ.ดร.ปิยนุช เวทยว์วิรณ์ มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   
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ผศ.ดร.ทวศีกัด์ิ ปิติคุณพงศสุ์ข มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   
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ผศ.ดร.อดิชยั พรพรหมินทร์ มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   

ดร.พรรณพิมพ ์พทุธรักษา มะเป่ียม มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   
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ผศ.ดร.เหมือนมาศ วเิชียรสินธ์ุ มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   

รศ.ดร.ชวเลข วณิชเวทิน มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   

รศ.ดร.วชัรินทร์ วิทยกลุ มหาวทิยาลยัเกษตรศาสตร์ วทิยาเขตบางเขน   

ศ.ดร.ปริญญา จินดาประเสริฐ มหาวทิยาลยัขอนแก่น   

รศ.ดร.วนัชยั สะตะ มหาวทิยาลยัขอนแก่น   

รศ.ดร.วนิยั ศรีอ าพร มหาวทิยาลยัขอนแก่น   

ผศ.ดร.กิตติเวช ขนัติยวชิยั มหาวทิยาลยัขอนแก่น   

ดร.ธนากร เมธาธรรม มหาวทิยาลยัขอนแก่น   

รศ.ดร.พงศกร พรรณรัตนศิลป์ มหาวทิยาลยัขอนแก่น   

ผศ.ดร.ธเนศ เสถียรนาม มหาวทิยาลยัขอนแก่น   

ผศ.ดร.พนกฤษณ คลงับุญครอง มหาวทิยาลยัขอนแก่น   

ผศ.ดร.วชุิดา เสถียรนาม มหาวทิยาลยัขอนแก่น   

ผศ.ดร.ลดัดา ตนัวาณิชกลุ มหาวทิยาลยัขอนแก่น   

รศ.ดร.วชัรินทร์ กาสลกั มหาวทิยาลยัขอนแก่น   

ผศ.ดร.ดลฤดี หอมดี มหาวทิยาลยัขอนแก่น   

ผศ.ดร.พทุธิพล ด ารงชยั มหาวทิยาลยัเชียงใหม่   

รศ.ดร.ธนพร สุปริยศิลป์ มหาวทิยาลยัเชียงใหม่   

ผศ.ดร.ธวชัชยั ตนัชยัสวสัด์ิ มหาวทิยาลยัเชียงใหม่   

ดร.เกรียงไกร อรุโณทยานนัท ์ มหาวทิยาลยัเชียงใหม่   
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ดร.ปรีดา พิชยาพนัธ์ มหาวทิยาลยัเชียงใหม่   

ดร.อรรถวทิย ์อุปโยคิน มหาวทิยาลยัเชียงใหม่   

ผศ.ดร.ปุ่น เท่ียงบูรณะธรรม มหาวทิยาลยัเชียงใหม่   

รศ.ชูโชค อายพุงศ ์ มหาวทิยาลยัเชียงใหม่   

ผศ.ดร.อุมา สีบุญเรือง มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้เจา้คุณทหารลาดกระบงั   

ผศ.ธีระ ลาภิศชยางกลู มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ศ.ดร.ชยั จาตุรพิทกัษก์ลุ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ผศ.ดร.วรีชาติ ตั้งจิรภทัร มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

รศ.ดร.ทวชิ พลูเงิน มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ผศ.ดร.ชูชยั สุจิวรกุล มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

รศ.ดร.วรัช กอ้งกิจกลุ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

รศ.ดร.พรเกษม จงประดิษฐ ์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ดร.นงลกัษณ์ บุญรัตนกิจ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ดร.ทรงเกียรติ ภทัรปัทมาวงศ ์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ผศ.ดร.ธิดารัตน์ บุญศรี มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ศ.ดร.ชยัยทุธ ชินณะราศรี มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ผศ.ดร.พิชญ ์สุธีรวรรธนา มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ผศ.ดร.สนัติ เจริญพรพฒันา มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

รศ.ดร.วโิรจน์ ศรีสุรภานนท ์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้ธนบุรี   

ผศ.ดร.มาโนช สรรพกิจทิพากร มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ดร.ณฐัพงศ ์มกระธชั มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.กิตติภูมิ รอดสิน มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.สมิตร ส่งพิริยะกิจ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.ขวญัเนตร สมบติัสมภพ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.พิทยา แจ่มสวา่ง มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

อ.สุรัตน์ ศรีจนัทร์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ดร.ณพล อยูบ่รรพต มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.กีรติกานต ์พิริยะกลุ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.ชยัศาสตร์ สกลุศกัด์ิศรี มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.กวนิ ตนัติเสวี มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.วรรณวทิย ์แตม้ทอง มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.ศกัดา กตเวทวารักษ ์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.ชยัรัตน์ ธีระวฒันสุข มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   
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รศ.ดร.สุพรชยั อุทยันฤมล มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.การุณ ใจปัญญา มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.สนัชยั อินทพิชยั มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ดร.เจนจิต เอ่ียมจตุรภทัร มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ศ.ดร.ปิติ สุคนธสุขกลุ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.ศิริศกัด์ิ คงสมศกัด์ิสกลุ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ดร.ประสิทธ์ิ ประมงอุดมรัตน์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.กิตติชยั ธนทรัพยสิ์น มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.เทอดศกัด์ิ รองวริิยะพานิช มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.กมลวลัย ์ลือประเสริฐ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.สุชญัญา โปษยะนนัทน์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ดร.ภาณุวฒัน์ ป่ินทอง มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.สยาม แกมขนุทด มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ดร.กฤษชยั ศรีบุญมา มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

รศ.ดร.พิสณฑ ์อุดมวรรัตน์ มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.พิจิตร เจียมวรางกรู มหาวทิยาลยัเทคโนโลยพีระจอมเกลา้พระนครเหนือ   

ผศ.ดร.วไิลลกัษณ์ สระมูล มหาวทิยาลยัเทคโนโลยมีหานคร   

ผศ.ดร.ปิติศานต ์กร ้ ามาตร มหาวทิยาลยัเทคโนโลยรีาชมงคลธญับุรี   

ดร.จตุพล ตั้งปกาศิต มหาวทิยาลยัเทคโนโลยรีาชมงคลธญับุรี   

ดร.สนธยา ทองอรุณศรี มหาวทิยาลยัเทคโนโลยรีาชมงคลลา้นนา ตาก   

ดร.เกียรติสุดา สมนา มหาวทิยาลยัเทคโนโลยรีาชมงคลอีสาน   

ดร.รัฐพล สมนา มหาวทิยาลยัเทคโนโลยรีาชมงคลอีสาน   

รศ.ดร.สิทธิชยั แสงอาทิตย ์ มหาวทิยาลยัเทคโนโลยสุีรนารี   

ผศ.ดร.ปรียาพร โกษา มหาวทิยาลยัเทคโนโลยสุีรนารี   

รศ.ดร.วชรภูมิ เบญจโอฬาร มหาวทิยาลยัเทคโนโลยสุีรนารี   

ผศ.ดร.รัฐพล ภู่บุบผาพนัธ์ มหาวทิยาลยัเทคโนโลยสุีรนารี   

ผศ.ดร.พรพจน์ ตนัเส็ง มหาวทิยาลยัเทคโนโลยสุีรนารี   

ดร.วรางคณา แสงสร้อย มหาวทิยาลยัธรรมศาสตร์   

รศ.ดร.บุรฉตัร ฉตัรวรีะ มหาวทิยาลยัธรรมศาสตร์   

รศ.ดร.นคร ภู่วโรดม มหาวทิยาลยัธรรมศาสตร์   

รศ.ดร.ชวลิต ชาลีรักษต์ระกลู มหาวทิยาลยัธรรมศาสตร์   

รศ.ดร.สายนัต ์ศิริมนตรี มหาวทิยาลยัธรรมศาสตร์   

รศ.ดร.อุรุยา ลียะวณิช มหาวทิยาลยัธรรมศาสตร์   
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รศ.ดร.วรียา ฉิมออ้ย มหาวทิยาลยัธรรมศาสตร์   

อ.ภคัพงศ ์หอมเนียม มหาวทิยาลยันเรศวร   

ดร.รัฐภูมิ ปริชาตปรีชา มหาวทิยาลยันเรศวร   

ดร.ก าพล ทรัพยส์มบูรณ์ มหาวทิยาลยันเรศวร   

ดร.ศิริชยั ตนัรัตนวงศ ์ มหาวทิยาลยันเรศวร   

ผศ.ดร.ทวชียั ส าราญวานิช มหาวทิยาลยับูรพา   

ผศ.ดร.ธรรมนูญ รัศมีมาสเมือง มหาวทิยาลยับูรพา   

ดร.เพชร์รัตน์ ล้ิมสุปรียารัตน์ มหาวทิยาลยับูรพา   

ดร.วรรณวรางค ์รัตนานิคม มหาวทิยาลยับูรพา   

ผศ.ดร.สยาม ยิม้ศิริ มหาวทิยาลยับูรพา   

ดร.สิทธิภสัร์ เอ้ืออภิวชัร์ มหาวทิยาลยับูรพา   

ดร.ปิติ โรจน์วรรณสินธ์ุ มหาวทิยาลยับูรพา   
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ดร.พทัรพงษ ์อาสนจินดา มหาวทิยาลยับูรพา   

ผศ.ดร.ณฐัพงศ ์ด ารงวริิยะนุภาพ มหาวทิยาลยัพะเยา   
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Abstract 

This paper presents the large deflection behavior of the 
cantilever beam subjected to follower distributed load where 
material of the cantilever beam obeys the generalized 
Ludwick’s constitutive law. The cross-section of the prismatic 
beam is of rectangular. The cantilever beam is subjected to 
follower distributed load. Moreover, the beam is well deflected 
so that the large deflection theory of the beam should be 
taken into account. The stress-strain relationship of such 
materials is presented by generalized Ludwick’s constitutive 
law. To derive the set of governing differential equations, 
equilibrium equations, moment-curvature relation obeying the 
generalized Ludwick’s material model and nonlinear geometric 
relations have been considered. Up to this point, a set of 
strongly nonlinear simultaneous first-order differential equations 
with boundary conditions is established and numerically solved 
by using the shooting method accompanying with the seventh 
order Runge-Kutta integration technique. Furthermore, some 
numerical results are carried out and discussed highlighting the 
significant influences of the material nonlinearity parameters 
n and 0 on the equilibrium configurations and the equilibrium 
paths. 

 
Keywords: large deflection, cantilever beam, follower force, 
generalized Ludwick’s constitutive law, nonlinear elastic 

material, shooting method 

1. Introduction 

In recent years, with the development of technology, 
increasing demands for optimum or minimum-weight designed 
structural components makes the slender structures become of 
importance. To explore this kind of structures, the large 
deflection theory is necessary. Especially, developments in 
mechanical engineering, electronic engineering, aerospace 
engineering, robotics and manufacturing, etc. Furthermore, 
cantilever beam can be applied to a variety of applications, 
such as aircraft wings and helicopter blades are just some of 
the mechanical and structural examples. The follower 
distributed load acting on the beam can also be viewed as the 
air pressure on the aircraft wings.  

There have been a large number of contributions pertaining 
to nonlinear analysis of structural elements, of which the 
majority considers only the geometrical nonlinearities. 
Contributions that are most relevant to the problem addressed 
here are briefly discussed below.  

Rao and Roa [1] studied large-deflection of a 
cantilever beam subjected to a rotational distributed loading. 
The model formulation is formulated by nonlinear differential 
equation of the second order. Meanwhile, the large deflection 
problem of a non-uniform spring-hinged cantilever beam under 
a tip-concentrated follower force and the static analysis of the 
flexible non-uniform cantilever beams under a tip-* Corresponding author  E-mail address: touchsokheng2013@gmail.com   

** E-mail address: boonchai_p@rmutt.ac.th  



163 
 

concentrated and intermediate follower forces, respectively, 
was considered by Shvartsman [2, 3]. Kocaturk et al. [4] 
investigated the large deflection static analysis of a cantilever 
beam subjected to a point load. The method of nonlinear 
finite element is introduced. Phungpaingam et al. [5] 
investigated the post-buckling of beam subjected to follower. 
The elastica theory and the shooting method are applied to 
carry out the numerical results. Furthermore, the shooting 
method is set up to solve the problem of the large deflection 
of a cantilever beam with geometric nonlinearity [6]. While, 
Chen [7] proposed an integral approach for large deflection 
cantilever beams. The moment integral treatment are 
formulated to get the numerical solution. Otherwise, large 
deflections of a cantilever beam under an inclined end load 
studied by Mutyalarao et al [8]. Nallathambi et al. [9] described 
large deflection of constant curvature cantilever beam under 
follower load. The fourth order Runge–Kutta method and 
shooting method are proposed to get the numerical solution. 
Moreover, Xiang et al. [10] researched on nonlinear analysis of 
a cantilever elastic beam under non-conservative distributed 
load. The numerical results are solved by using the shooting 
method. Taking a look at this problem, Kim et al. [11] 
employed finite element method to deal with beam stability 
on an elastic foundation subjected to distributed follower 
force. Vazquez-Leal, et al. [12] examined the approximations 
for large deflection of a cantilever beam under a terminal 
follower force and nonlinear pendulum. The homotopy 
perturbation method and Laplace-Pad´e post treatment are 
established to solve the problems. Otherwise, Eren [13] 
investigated the large deflections in rectangular combined 
loaded cantilever beams made of non-linear Ludwick type 
material by means of different arc length assumptions. For 
mathematical formulation, the materials of geometric 
nonlinearities are mentioned. The theory of Euler–Bernoulli is 
established to compute the horizontal and vertical deflections.  
Moreover, Athisakul et al. [14] applied the shooting method 
employing with Runge–Kutta method to carry out the 
numerical results with the problem of the effect of material 
nonlinearity on large deflection of variable-arc-length beams 
subjected to uniform self-weight. One more interesting work is 
that Lee [15] investigated large deflection of cantilever beams 
of nonlinear elastic material under a combined loading. The 
shearing force formulation is set up to formulate the governing 
equation to solve the problem. Butcher’s fifth order Runge–
Kutta method is employed to compute the numerical results. 

What is more, Brojan et al. [16] dealt with the large deflections 
of non-linearly elastic non-prismatic cantilever beams made 
from materials obeying the generalized Ludwick constitutive 
law. In the model formulation, the moment-curvature formula 
was set up to get the the governing equations and the 
boundary conditions in order to solve the problem. The similar 
problems of generalized Ludwick constitutive law are post-
buckling of linearly tapered column and simply supported 
column made of nonlinear elastic materials obeying the 
generalized Ludwick constitutive law were studied by Saetiew 
and Chucheepsakul [17, 18], respectively. The geometrical 
material nonlinearities are employed to formulate the 
governing equations. The shooting method is selected to carry 
out the numerical results. Last but not least, Brojan et al. [19] 
illustrated on static stability of nonlinearly elastic Euler’s 
columns obeying the modified Ludwick’s law. Four system 
states in static equilibrium are perceived as neutral, unstable, 
locally stable, and globally stable state.  

As described literatures above, it was remarkable that 
research studies on the behavior of the large deflection 
problems that are made of material nonlinearities have carry 
out mostly the cantilever beams and columns. Only the small 
amount of research studies handled the problem with a 
slender, follower distributed load cantilever beam. Brojan et al. 
[20] considered the large deflections of non-prismatic 
nonlinearly elastic cantilever beams subjected to non-uniform 
continuous load and a concentrated load at the free end 
obeying generalized Ludwick’s constitutive law. The cantilever 
beam encountered the follower loads can be found in Hartono 
[21] and Rao and Rao [1]. However, in their papers, the 
material model still employed the Hooke’s law. Hence, in this 
paper, we aim to tackle the problem of the cantilever beam 
under uniform follower distributed load in which the material 
model belongs to the Generalized Ludwick model. 

By perceiving the effects of geometrical and material 
nonlinearities, the governing equations obtained for the large 
deflection behavior are highly nonlinear. Generally, the closed-
form solutions cannot be employed in this situation. The 
shooting method is then required and played a vital role to 
obtain numerical solutions. From the results, the load-
deflection curves and equilibrium shapes are highlighted.      

2. Problem definition and notations 

Referring to Fig. 1, OB is the undeformed configuration of a 
uniform cantilever beam having length L subjected to a 
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distributed load w . Under loading, the beam undergoes large 
deflection and the deformed configuration of the beam is 
presented by OA (Fig. 2). After deformation, the distributed 
load direction is rotated by compared to the original unde-
formed vertical direction. OX, OY are the rectangular Cartesian 
co-ordinate system. s and are the intrinsic co-ordinate system 
followed in the present study. It is required to find out the tip 
angle , the tip deflections of the cantilever beam 0X , 0Y and 
the deformed shape for any given distributed load. 

Prior to the mathematical formulation, the basic assump-
tions have been. They are: 

(1) Material of the beam is made of incompressible, homo-
geneous, isotropic obeying the generalized Ludwick’s 
constitutive law. 

(2) Bernoulli hypothesis is adapted to this study. 
(3) Shear deformation is negligible because the beam is 

considered as a slender member. 

3. Mathematical formulation and solution 

The mathematical formulation derives from considering 
constitutive relationships, geometric relationships and equili-
brium of the beam. Hence a set of highly nonlinear differential 
equations is obtained to describe the elastica of deformed 
beam subjected to follower distributed load, as shown in Fig. 
2. The solution procedure is also treated in this section. 

 
 
 
 
 
 
 
 

Fig.1. A cantilever beam subjected to the follower distributed load  
with undeformed configuration 

 
 
 
 
 
 
 
 
 

Fig.2. A cantilever beam subjected to the follower distributed load  
with deformed configuration 
 
 
 

 
 
 
 
 
 
 
 
Fig.3. Free-body diagram of an infinitesimal element of the beam 

3.1 Constitutive relationships 

A well-known Ludwick-type nonlinear elastic constitutive 
formula is one of the generalizations of the Hooke’s law to 
describe the nonlinear elastic behavior. Its nonlinear stress–
strain relationship is a power function as shown below. 
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   (1) 

where and  are stress and strain (for tensile 0  and 
compressive 0  ), respectively; E represents material cons-
tant and n is dimensionless parameter indicating the degree of 
material nonlinearity.  

It is important to note that Eq. (1) has one major 
shortcoming, the stress gradient goes to infinity for 1n  , and 
goes to zero for 1n  when the strain value reaches zero, Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. Stress–strain relationships in tensile domain 

By eliminating this problem, since it is not possible to 
represent the actual behavior of material, Jung and Kang [22] 
suggested a modified (generalized) form of the Ludwick’s 
constitutive law, mathematically described by the following 
expression, 
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in which an additional parameter 0 is supplemented to 
prevent those shortcomings. 

The generalized Ludwick’s constitutive law is developed by 
using three parameters: E , n and 0 . These parameters can be 
used for approximating the stress-strain curves of such 
materials obtained by experiments. By virtue of Eq. (2), setting 

0 0  leads to Ludwick-type nonlinear elastic constitutive 
law; consequently, the Hooke’s law is obtained by setting 

1n  . 

3.2 Governing equations 

The elastica theory is used to obtain the set of governing 
equations of the aforementioned problem. Applying the 
equilibrium equations, moment-curvature, and the geometric 
relations to the infinitesimal element ds of the deformed 
beam Fig.3, the set of differential equations can be written as: 

 

cos ,
dx

ds
      (3) 

sin ,
dy

ds
      (4) 

cos ,
dV

w
ds

     (5) 

sin ,
dH

w
ds

     (6) 

 cos sin .
dM

V H
ds

       (7) 

 
As well-known the inner bending moment acting at any 

cross-section of the beam can be expressed with normal 
stress : 

.

A

M ydA      (8) 

where is related to the corresponding strain in tension and 
compression, see (2). Let dA bdy be the infinitesimal area of 
the cross-section. Furthermore, using the normal strain-
displacement expression y   ; hence 
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By considering the symmetry of the cross-section and after 

some manipulation, the inner bending moment-curvature 
relationship of a uniform cross-section rectangular beam made 
up from nonlinear elastic materials obeying the generalized 
Ludwick’s constitutive law can be written as follows: 
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As mentioned previously and setting 0 0  into Eq. (10), 
the following expression for the inner bending moment–
curvature relationship of Ludwick-type nonlinear elastic 
material can be achieved. 
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Similarly, by further setting 1n  into Eq. (11), the simple 

expression for the inner bending moment–curvature relation-
ship of linearly (Hookean) elastic can be obtained. 

0 ,M EI               (12)  
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3

0
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bh
I  is the moment of inertia of the rectangular 

cross-section. 
By differentiating Eq. (10) once with respect to the arc 

length s the result gives: 
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where 
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By substituting Eq. (7) into Eq. (14), this can be achieved. 
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For the sake of the generality, the non-dimensional terms 
are introduced as follows. 
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In view of the foregoing non-dimensional terms, Eq. (14) 

can be rewritten in non-dimensional form as follows: 
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3.3 Method of solution 

Since a set of governing equations is a complicated 
nonlinear differential equation, the numerical solutions are 
required for describing the deformation behavior of the 
cantilever beam problem. The geometric relationships in Eqs. 
(3) and (4) can be expressed in the non-dimensional forms as, 
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The boundary conditions are as follows: 
0( 0)s    and ( 1) 0,s             (21a) 

( 0) 0s    and ( 1) 0,s             (21b) 
x( 0) 0s    and x( 1) x(1),s            (21c) 
y( 0) 0s    and y( 1) y(1).s            (21d) 
Equation (20a-f) with the boundary conditions in Eqs. (21a-

d) forms the nonlinear two-point boundary value problem, 
which can be solved by the shooting method. For a given 
value of 0 , there is an unknown ( w ) to be evaluated from six 
of first-order nonlinear differential equations (20a)–(20f) with 
boundary conditions given in equations (21a)–(21d). The 
solution steps are summarized below. 

In order to find the solution, the shooting method is 
employed to obtain the numerical solutions. The numerical 
procedure can be summarized in the following steps. 

(1) Specify the non-dimensional cross-section parameters 
( b and h ), and the material constants ( n and 0 ) to the pro-
blem. 

(2) Assign the value of 0  and estimate w  for the first 
iteration. 

(3) Integrate equations (20a)–(20f) from 0s  and 1s   
by using the seventh-order Runge–Kutta with adaptive step 
size control. 
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(4) Minimize the error norm in which the objective 
function for the minimization process is 

 
 Minimize  (1)

w
     (22) 

In the computation, the desired value of is that less 
than the prescribed tolerance ( 710 ) for the solution using the 
Newton-Raphson iterative scheme. 

In the equation (19a), it can be seen that the singularity 
may occur 0  . To overcome this problem, the initial 
curvature at the tip of the beam is set to 51 10   instead 
of zero. 

In our computation, we assume that the set of material 
parameters (i.e.,

0 and n ) can be related to each other. 
Technically, the initial slopes of the stress-strain curves are 
utilized to obtain the relationship. Hence the initial slopes of 
the stress–strain curve can be achieved by differentiating 
equation (2). The result obtains 
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where the initial slope of the stress-strain curve is defined by 
E . For the example, if the initial slopes are given by 

0.5E and 2E , and the relationship between 0 and n are 
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  , respectively. It should be 

noted that Eq. (23) does not valid for 1n  . If 1n  , 
0 would set to be zero automatically. In our numerical 

experiments, the initial slopes are chosen to be 0.5E and 2E , 
to show the difference between linear and nonlinear 
constitutive relationships.   

4. Results and discussion 

To analyze the numerical computations of the large 
deflections of cantilever beam obeying generalized Ludwick’s 
material model subjected to follower distributed load, the 
cross-sectional dimensions and length of the cantilever beam 
are given by the non-dimensional geometric parameters as 
follows: 0.2mb  , 0.2mh  . 

To point out the nonlinear constitutive relationships clearly 
and simply we have chosen the two following numerical 
examples, the rectangular cross-section of cantilever beam is 
subjected to several different follower distributed loads with 
the degree of material nonlinearity n .  

The first case of the cantilever beam with non-dimensional 
geometric parameters 0.2mb  , 0.2mh  . The nonlinearity 

material parameters to determine are 1n  and  10 2
n

nn  . 

The second case of the cantilever beam with non-
dimensional geometric parameters 0.2mb  , 0.2mh  . The 

nonlinearity material parameters to determine 

are 1n  and 1

0
2

n

nn


 
  
 

. 

The first two tables below are illustrated the numerical 
results in sequence. 

The result listed in Table 1 can be interpreted that when 
using 1n  , the rotation angle 0 and the follower distributed 
load w are both increase their values. In contrast, Table 2 
demonstrated that when applying 1n  , the rotation angle 0  
successively increases with the follower distributed load w .    

 
Table 1 Numerical results for cantilever beam made of the 
generalized Ludwick-type nonlinear elastic material for case 1.  
 

0  
(rad)

 

w  

 10 2
n

nn   

1.10n   1.20n   1.30n   1.45n   1.50n   

0.20 1.68619 2.00236 2.11785 2.17475 2.18264 

0.80 6.06606 6.91150 7.30042 7.50542 7.52825 

1.40 10.47533 11.60927 12.12867 12.27408 12.28291 

2.00 15.42334 16.74968 17.06725 17.21551 17.38962 

2.60 21.59041 23.07919 22.39006 23.37350 23.52711 

3.14 29.40196 31.10185 31.46138 31.33843 29.32568 

 
Table 2 Numerical results for cantilever beam made of the 
generalized Ludwick-type nonlinear elastic material for case 2.  
 

0  
(rad)

 

w  

 10 0.5
n

nn   

0.55n   0.65n   0.75n   0.85n   0.95n   

0.20 0.57700 0.63391 0.64521 0.70084 0.98283 

0.80 2.87544 2.92139 3.00960 3.34930 4.29766 

1.40 5.61243 5.83952 5.98951 6.59744 8.04496 

2.00 9.69558 9.60880 9.77101 10.60975 12.48068 

2.60 14.87062 14.71242 14.81659 15.86234 18.15356 

3.14 19.97827 20.60874 21.33293 22.56080 25.34391 

 
In addition, the nonlinearity material parameter 0.55n   

and 1.30n  are selected to show the deflection configuration 
in figure 5 and 6. And their deflection configuration results 
for 0.55n  and 1.30n  are displayed in Table 3 and 4, 
respectively. 
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Fig.5. Equilibrium configurations of the nonlinearly cantilever 
beam subjected to follower distributed load 0.55n  . 

Otherwise, the nonlinearity material parameter 1.30n  is 
chosen to demonstrate the deflection configuration. 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.6. Equilibrium configurations of the nonlinearly cantilever 
beam subjected to follower distributed load 1.30n  . 

. 
Table 3 Numerical results for cantilever beam made of the 
generalized Ludwick-type material for 0.55n  . 

Table 4 Numerical results for cantilever beam made of the 
generalized Ludwick-type material for 1.30n  . 

 
Furthermore, the relationship of the load-displacement 

curve for the nonlinearly cantilever beam between the 
follower distributed load w and the rotation angle 0 are exhi-
bited with the figure below.  

 
   
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.7. Load-displacement curve for the nonlinearly cantilever 
beam subjected to follower distributed load. 
 
 
 
 
 
 
 
 

 
 
Fig.8. Equilibrium configurations for 0 1.20  and 0 2.0     

 

Configuration  101.30 and 2
n

nn n    

0 (rad)  w  
1 0.2 2.11785 

2 0.4 3.95424 

3 0.8 7.30042 

4 1.2 10.42959 

5 1.6 13.70155 

6 2.0 17.06725 

7 2.4 21.35352 

8 2.8 26.01780 

9 3.14 31.46138 

Configuration  100.55 and 0.5
n

nn n    

0 (rad)  w  
1 0.2 0.57700 

2 0.4 1.32022 

3 0.8 2.87544 

4 1.2 4.52891 

5 1.6 6.88814 

6 2.0 9.69558 

7 2.4 12.90037 

8 2.8 17.02910 

9 3.14 19.97827 
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Since the Ludwick-type constitutive law has one major 
shortcoming as mentioned before, the large deflection behavior 
of a cantilever beam obeying generalized Ludwick’s material 
model subjected to follower distributed load is discussed in this 
section. The load–displacement curves of the cantilever beam 
with various material nonlinearity parameters n are plotted in 
Fig. 7.  

It is remarkable that a linear case 1n  (Fig. 7), the well-
known load-displacement curve is monotonic and stable. As it 
can be seen from the figure, the follower distributed load w   
increases as the rotation angle 0 increases.  

For the case of hardening material, where 1n  and 1n  , 
the behaviors of the cantilever beam are similar to the linear 
case 1n  . 

 
Having compared the results with Rao and Rao [1], in this 

research was founded that the values of the rotation 
angle 0 and the follower distributed load w are very close to 
those of Rao and Rao [1] while using 1.0n  . It is also shown in 
Table 5. 

 

Table 5 Comparison results between Rao and Rao [1] and the 
presented study.  

0  w    

deg rad Rao and Rao [1] This research 

9.54 0.1665 1.0 0.99980 

19.04 0.3323 2.0 1.99978 

37.75 0.6589 4.0 4.00016 

55.83 0.9744 6.0 6.00041 

73.02 1.2744 8.0 7.99981 

89.15 1.5560 10.0 9.99972 

104.12 1.8172 12.0 11.99933 

130.43 2.2764 16.0 16.00006 

152.09 2.6545 20.0 19.99959 

169.68 2.9615 24.0 24.00033 

183.86 3.2090 28.0 28.00096 

195.27 3.4081 32.0 32.00189 

 
 

5. Conclusions 

In the presented study the large deflection behavior of the 
cantilever beam subjected to follower distributed load where 
material of the cantilever beam obeys the generalized 
Ludwick’s constitutive law is investigated. Both geometrical and 
material nonlinearities are relevant to this problem since the 
material of the cantilever beam is assumed to be nonlinearly 

elastic. This can be surpassed in a three-parametric generalized 
Ludwick’s material model which is described and applied in this 
study of large deflections of cantilever beam. Since the 
governing equations were highly nonlinear differential equa-
tions, the closed-form solutions are in general impossible. 
Otherwise, the cantilever beam problem has been solved 
numerically by the shooting method. Several numerical 
examples were selected to demonstrate the influence of the 
geometry and configurations of the beam, loading conditions, 
and constitutive law of the material on the deflection behavior 
of the discussed cantilever beam. Load-deflection curves are 
monotonic and stable. 

From a practical standpoint, results obtained in this paper 
illustrate some benefits of the generalized Ludwick’s model. 
We have generated an exact moment-curvature formula for 
materials which obey the generalized Ludwick’s law. 

Last but not least, the present method can be developed 
for a variety of cross-section shapes with varying longitudinal 
shape subjected to follower distributed load in which more 
numerical effort is needed. What is more, the recent findings 
from this study will benefit the analysis and design of the 
practical problems. This hands out as a benchmark for future 
experimental investigations as well. 
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