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ABSTRACT 

The diminishing agricultural land is a problem that is being faced by developing 

countries like Indonesia. According to the Indonesian Central Statistics Agency, there 

was a significant reduction in agricultural land from 2014 to 2018. One reason is that the 

effort spent cultivating or ploughing the land is not worth the income obtained by farmers. 

This is what makes farmers decide to convert their agricultural land. This will be 

undeniably a serious problem for Indonesia's food security. Therefore, it is essential to 

combine conventional agriculture with technology in the form of a tractor that can operate 

automatically to help farmers ploughing the paddy fields. This dissertation presents the 

design, manufacture, and implementation of automation on a two-wheeled drive hand 

tractor. The five objectives of this dissertation were to:  1) design and create software, 

electrical and mechanical control system of a 2WD hand tractor, 2) collect the sensors 

data set of the 2WD hand tractor control system, 3) develop the path planning navigation 

using GIS and HTML, 4) develop and analyze GPS, accelerometer, gyroscope and 

compass data fusion system using the Kalman filter applied to the 2WD hand tractor, and 

5) develop and analyze a Rice Field Sidewalk (RIFIS) detection system using image 

processing. 

The methodology used to achieve these objectives included the collection of the 

tractor's behavior data that were controlled manually and remotely. The path-planning 

algorithm using the waypoint navigation method was used to complement the 

autonomous capabilities of the tractor. Several sensors were installed on the tractor (GPS, 

compass, and camera), and the data were collected using the MQTT Internet of Things 

protocol. Furthermore, it is necessary to apply a sensor fusion to overcome the noise 

generated by the sensor during data collection. The method applied both the Kalman filter 
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and the Butterworth filter. Meanwhile, the camera installed on the tractor produced video 

dataset recordings used as an input for the Rice Field Sidewalk detection process. The 

Mask-RCNN method was selected and tested as a detection algorithm. 

In this study, the five primary objectives have been accomplished. The initial 

objective was to construct TROLLS: Tractor Controlling System, which combines 

software, electrical, and mechanical components to enable the remote tractor control. The 

initial prototype tested on the tractor Quick G-3000 was then reviewed. The study and 

assessment results were then applied to the Quick G-1000 tractor. The second objective 

was achieved during the field trial by recording the sensor and video data. This Rice Field 

Sidewalk (RIFIS) dataset is a compilation of GPS, compass, and camera sensor readings 

utilized to accomplish objectives four and five. In addition, the third objective involves 

the development of a path-planning platform based on Laravel and Google Maps, with 

the starting point, ending point, and puddler's distance serving as initial inputs. As an 

automation strategy for the tractor, the generated path results are deployed as an input for 

the waypoint navigation. The sensor readings are less steady based on the data acquired 

for the third objective; the Kalman filter eliminates the noise. For the fifth objective, an 

early investigation was done by utilizing Deep Learning approaches to detect RIFIS. 

Based on the research, an autonomous tractor control system has been created to help 

farmers in the process of ploughing fields. 

 

Keywords: hand tractor, automation, control system, internet of things, kalman filter 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Statement of the Problem 

Smart farming has become a new trend in agricultural development. 

Technologies based on GPS (Global Positioning System), Sensor Fusion, IMU (Inertial 

Measurement Unit), and Computer Vision are widely used in modern agriculture (Catania 

et al., 2020; Hadas et al., 2019; Hasheminasab et al., 2020; Kragh et al., 2017). Paddy 

fields are one of the sub-farms that provide staple food (Syuhada et al., 2020) this place 

makes it possible to combine traditional agricultural models with modern technology. 

Generally, paddy fields are used for rice cultivation, but several steps must be 

taken before the rice planting process. This stage consists of field ploughing, cultivating 

rice, treating the land, pests and preventing disease, and harvesting. Each of these stages 

has an important purpose, and if not carried out, the process after will not run optimally. 

Among them, one of the most important processes is the ploughing. 

Ploughing is one of the greatest energy consumers in agriculture (Namdari et 

al., 2011). This is an activity of cultivating the land by rotating the soil so that the soil 

becomes smooth and easy to plant. The process consists of two processes (loosening and 

refining the soil). These two processes take a long time because, in this process, the soil 

must be soft so that it will be easy to carry out planting rice. The length of time it takes 

to complete the tillage process is determined by several factors, one of which is the 

structure and texture of the soil (S. Li et al., 2021). The process of ploughing the soil uses 

a machine called a tractor engine. Various types of tractors exist and are currently being 

used in different parts of agriculture sectors, both two-wheeled and four-wheeled tractors 

(Moinfar et al., 2020).  

Farmers in some Indonesian provinces primarily use two-wheel drive (2WD) 

hand tractors. This tractor has a control in the shape of the letter "V," with clutch 

handlebars at the end that is used to turn the tractor left or right. This type of tractor uses 
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gasoline. However, the control process is still manual or uses human power/operators 

(Syuhada et al., 2020). When seen from the area of agricultural land to be ploughed, this 

process can tire the farmer operators of controlling the tractor for a long time, particularly 

in scorching weather. These problems can make farmers feel tired quickly during the 

tillage process and make tractor operation inefficient.  

Several studies in control systems have been conducted on two and four-

wheeled tractors to cope with these problems. A multi-modal dataset was compiled 

utilizing a variety of cameras and sensors to detect static and moving objects to serve as 

the foundation for the development of automated agricultural vehicles (Kragh et al., 

2017). Research on Precise Point Positioning (PPP) in Precision Agriculture (PA) was 

also conducted utilizing GNSS technology on big four-wheel tractors. (Guo et al., 2018) 

(H. Wang & Noguchi, 2019a) (Binh et al., 2019) (Alipour et al., 2019). Several of these 

studies have resulted in the development of a four-wheel tractor control system at a 

relatively high cost to Indonesian farmers (Fabbri et al., 2017)(Shyrokau et al., 

2018)(Fang et al., 2017)(Kassaeiyan et al., 2020). Furthermore, numerous studies have 

been conducted to optimize the tractor's mechanical performance (J. Han et al., 2017; 

Janulevičius et al., 2018; Shafaei et al., 2019, 2020a, 2021; H. Wang & Noguchi, 2018; Xiao et al., 

2018), embedded control systems (Das et al., 2020; Ding et al., 2021; Gupta et al., 2019; Javad 

& Saeid, 2021; Yin et al., 2020; Zhou et al., 2020), and software (Ospina & Noguchi, 2020; 

Shafaei et al., 2018, 2020b; Soylu & Çarman, 2021; C. Wu et al., 2019), enabling it to operate 

and be controlled by a distance. These comprehensive studies are focused on powerful 

four-wheeled tractors. 

This study presents a novel design, implementation, and testing on the low-cost 

Trolls (Tractor Controlling System) platform for a small two-wheel-drive walk-behind 

hand tractor (Quick G3000 and G1000). Based on our knowledge, this is the first time a 

remote-control system has been used to operate this tractor from a certain distance. The 

control command was sent via Bluetooth, and the HC-05 module was utilized as the 

receiver in Arduino. This platform was tested in the Quick G3000 and G1000 tractors. 

These tractors were selected considering that many farmers in Indonesia use this tractor. 

This research has two main contributions; the first is the novel design and implementation 
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of the mechanics, electronics, and software of the G3000 and G1000 tractors. The system 

prototype was implemented in G3000, and the commercialized ready final product was 

implemented in G1000.  

With this platform, farmers can control their tractors remotely using 

smartphones to plough rice fields without having to heat up and experience fatigue. The 

maximum control distance is 30 meters due to Bluetooth's signal range limitation. The 

second contribution is the tractor's mathematical model, which simulates the tractor 

movement using two comparison controllers, Pure Pursuit Control (PPC) and Supervisory 

Logic Control (SLC). This model creates tractor behaviour and movement simulations in 

the Matlab application. A pure pursuit controller algorithm moves the tractor model 

simulation autonomously from one coordinate to another. A pure pursuit controller was 

chosen because using a high-speed tractor in the rice field tillage process is unnecessary; 

this algorithm is solid and easy to implement (Kapsalis et al., 2021; Rains et al., 2014). 

The researcher also uses a supervisory logic controller to compare (Mebarki et al., 2015; 

Tomera, 2016). The simulation results are made using Matlab/Simulink, and some 

experiments are presented and discussed. As a preliminary study, the researcher collects 

data from GPS and compass sensors with the Internet of Things technology in the field-

testing process. Because the data obtained has a lot of noise and is less stable, filtering is 

needed. The researcher compared two filters (Kalman and Butterworth Low Pass) to find 

the best possible one. In addition to developing tractor control systems, this research 

focuses on adapting the autonomous mobile robots concept to tractors. 

Mobile robots have been effectively used to perform vital unmanned operations 

in various situations during the last few decades, including military, industrial, security, 

and agricultural. (Castillejo et al., 2020).  Mobile robots are increasingly being used in 

modern agriculture because the number of farmers is decreasing, necessitating more 

effective farming practices through agricultural mechanization. Agriculture has been 

mechanized in most field operations, including tillage, transplantation, agrochemical 

application, harvesting, and drying. While most agriculture operations are being explored 

for automation, Indonesian farmers' tillage methods are not yet automated.  
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Path Planning (Almoaili & Kurdi, 2020) is a critical problem that must be solved 

before a mobile robot may navigate and explore autonomously; this kind of robot is 

usually known as an Unmanned Ground Vehicle (UGV). The UGV can search for 

pathways based on their start and finish points, the surrounding environment, and 

specified parameters. With path planning, the UGV can save time and significantly reduce 

the UGV's wear and tear and the associated costs. It is an intriguing subject of study 

regarding the critical significance of path planning for UGVs. 

UGV applications have exploded in popularity during the last five 

years(Bonadies & Gadsden, 2019). Survey missions for two-dimensional (2D) coverage 

have demonstrated exceptional performance among diverse uses. For instance, two-

dimensional and three-dimensional mapping (Asadi et al., 2020), search & rescue (Qi et 

al., 2021), in combination with an Unmanned Aerial Vehicle for disaster & emergency 

management  (RADMANESH et al., 2021), or precision agriculture (Fotio Tiotsop et al., 

2020). The survey mission performed by UGV on agriculture is generally separated into 

two stages: i) the preparation stage, during which the vehicle is selected, the embedded 

system configured, and the path is planned; and ii) the execution stage, during which the 

vehicle operates autonomously and gathers data. Path planning must be completed to fully 

automate the operation, which is described as calculating paths for the robot to traverse 

the Region of Interest (ROI). (Galceran & Carreras, 2013). The problem's complexity has 

been determined as NP-Hard. (Arkin et al., 2000), However, assuming that traveling in a 

straight line is the quickest and most efficient way to traverse the entire landscape, a 

sophisticated solution involves reducing the problem and computing the path with the 

least tracing, e.g., (Huang, 2001) and (Santos et al., 2020). While several of these studies 

have produced significant results, they do not account for the path factors associated with 

the user's start and finish points. The puddler widths can be changed because the UGV is 

configured as a Walk Behind Hand Tractor. The path planning must account for 

additional criteria, such as interval tillage line distance from the user. Taking these three 

factors into account will affect the accuracy of land management while utilizing various 

models of tractors; this requires a path design that considers the mission's distance interval 

and the mission's starting and ending sites.  
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Due to limited field resources, efficient path computation is required; this can 

be accomplished by moving the Tractor in a straight line, forming a back-and-forth path 

(BFP) (Vasquez-Gomez et al., 2020). This study analyses convex polygon boustrophedon 

routes, a fast algorithm for determining BFP coverage on an ROI, considering the distance 

interval, start, and finish points (Figure 1.1). The decomposition of Boustrophedon cells 

is a widely used technique for coverage. The cells of the boustrophedon are filled in a 

simple backward and forward motion. Once each cell is closed, the entire environment is 

sealed (Choset & Pignon, 1998). As a result, the scope is narrowed to identify the whole 

path through the graph, reflecting the boustrophedon decomposition's cell proximity 

connection. This strategy is well-suited for plowing missions with defined start and 

finishes points and coverage.  

This path planning is a continuation of the previous work, TROLLS: Tractor 

Controlling System for Walk-Behind Hand Tractors (Crisnapati et al., 2023), presented 

in its first version. The initial version can control the Tractor remotely without 

automation. This article presents novel results in an open-source web-based platform and 

Google Maps for planning rectangular polygon paths that consider distance intervals 

mission start and finish points. This path planning is the first step towards an 

autonomously operating tractor engine validated in field trials using the Tractor G1000 

manufactured by Quick. The plowing mission was carried out as a validation of the 

success of the path-planning platform. The Tractor used in the field test is equipped with 

an embedded system platform that allows the Tractor to move autonomously based on 

the path planning platform's waypoints. 

 

Figure 1.1. Path Planning Pattern for Tractor Movement 

 

ps 

pf 



 

18 
 

As additional preliminary research, a rice field sidewalk detection system is also 

proposed to overcome the expensive Lidar sensor. The rice field sidewalk line is a thin 

boundary that becomes the boundary of a rice field in Indonesia. This part assists in 

isolating the observed rice field region, which can ultimately be used as a computational 

reference for image processing for tractor automation, particularly in the plowing process. 

Consequently, rice field sidewalk identification is a key function in agricultural computer 

applications for tractor (Jeon et al., 2021; Rondelli et al., 2022) navigation, UGV (Cutulle 

& Maja, 2021; Singh et al., 2020), monitoring (Quaglia et al., 2019), object detection (L. 

Wang et al., 2019), tracking (de Simone et al., 2018), distance calculation (Zhao et al., 

2022), collision avoidance (Mammarella et al., 2020, 2021), and path planning (Zoto et 

al., 2020a). Rice field sidewalk detection is a challenging task. A rice field scene’s 

abundance of elements contributes to its complexity. Strongly linear foreground or 

background objects and environmental variables are prominently featured. Grass, soil, 

puddles, clouds, paddy field structures, and background landscapes are strong sources of 

linear features. Rice field sidewalk (RIFIS) partial occlusion is possible because the 

horizon line may not traverse the entire width of the image, and its visibility is localized 

to a small section or region of the image. 

This scenario presents an additional difficulty for RIFIS detection methods 

based on projection-based computer vision, as they seek the presence of linear features in 

an image by employing edge detection methods and linear transformation. Variable 

illumination, grass, puddles, and the resemblance between the rice field region and the 

sidewalk present an additional obstacle for the RIFIS detection algorithm. Depending on 

the level of gloss and glare of the water surface in the rice fields, there may be a slight 

color variation between the sidewalk and the rice fields. Moreover, atmospheric 

conditions can alter the hue of puddles. The current scenario presents a difficulty for the 

RIFIS detection approach, which attempts to distinguish sidewalks from rice fields 

through image processing. 

For testing and performance evaluation, the method that seeks to address the 

problem of RIFIS identification requires collecting benchmark image data of rice fields. 

The dataset is the sole benchmark for evaluating the robustness of a procedure. 
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Researchers have offered numerous datasets of rice field imaging; however, limitations 

to seedling(Yang et al., 2021), disease (Kiratiratanapruk et al., 2020; Nguyen et al., 2021; 

Yakkundimath et al., 2022), height(Lee et al., 2018), varieties(Qadri et al., 2021), growth 

(Chang et al., 2021; Ramadhani et al., 2020), and pests (Dadashzadeh et al., 2020) rather 

than rice, the absence of background objects, low-resolution photos, and the lack of a 

RIFIS in this collection leave room for development. This research offered a RIFIS image 

dataset that satisfied the requirement by including distinct RIFIS characteristics in 

ploughing fields using hand tractors. The dataset primarily focused on computer vision 

and deep-learning-based RIFIS detection techniques. The entire dataset comprised 18 

videos, 3723 high-definition RGB images (1920 × 1080 pixels), and 970 labeled images. 

These images combined nineteen distinct characteristics for testing and evaluating the 

RIFIS detection algorithm. As an evaluation of the developed RIFIS dataset, Mask R-

CNN was used as validation. This Mask R-CNN model was used because of its popularity 

in detecting various objects (Blok et al., 2022; S. Wang et al., 2021; Warden & Situnayake, 

2019; Yu et al., 2019). According to researcher knowledge, no other publicly available 

dataset currently contains images of these RIFISs. 

1.2 Purpose of the Study 

An architecture for the Automation Embedded Control System was made for a 

2WD Hand Tractor as an Unmanned Agricultural Vehicle. Data collection (GPS, 

Accelerometer, Gyroscope, Compass, and Camera) on a 2WD hand tractor will be 

gathered, and the automation portion will be handled by the Kalman Filter algorithm.  

1.3 Research Questions and Hypothesis 

Several experiments will be carried out to answer the following questions:  

1. How to design and create software, electrical and mechanical of a 2WD 

hand tractor control system? 

2. How to collect the sensors data set of the 2WD Hand Tractor Control 

System? 

3. How to develop Path Planning navigation using GIS and HTML? 
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4. How to develop and analyze GPS, Accelerometer, Gyroscope, and Compass 

data fusion system using Kalman Filter applied to the 2WD hand tractor? 

5. How to develop and analyze a rice field sidewalk detection system using 

Image Processing? 

1.4 Theoretical Perspective 

Several interconnected fundamental theories are employed as a foundation in 

this study; below are those theories: 

1. The Fundamental of GPS Waypoint Navigation. 

2. The Fundamental of Accelerometer, Gyroscope, and Compass Sensor. 

3. The Fundamental of Image Processing for Rice Field Sidewalks Detection.  

4. The Fundamental of the Kalman Filter Algorithm. 

1.5 Delimitations and Limitations of the Study 

Several scopes have been used in this research to limit the work to make it more 

specific and focused. The scope of what will be done is just as follows: 

1. The automatic control system process runs based on data from sensors 

embedded in the tractor.  

2. The Kalman Filter algorithm is used to reduce the noise caused by the noise 

of sensor readings. 

3. The Quick G-1000 and G-3000 tractors are used in this research. G-3000 

will be used for prototyping, while G-1000 will be used for the final stage. 

4. The path planning algorithm applied in this study only covers an area 

classified as a convex region of interest. 

5. Video captured with a camera is used as preliminary research for rice field 

sidewalk detection and is not used to make tractor movement decisions.  

1.6 Significance of the Study 

Ploughing paddy fields is a laborious process usually done by hand, with 

humans acting as tractor operators. The main purpose of this research is to develop an 

innovation in increasing the efficiency of time and labor in operating the Quick G-1000 
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and G-3000 type tractor, a legendary tractor popularly used by farmers in Indonesia. 

Farmers' paddy field ploughing will become more effective and efficient with this system. 
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CHAPTER 2 

THEORIES AND LITERATURE REVIEW 

 

2.1 Introduction 

 

Figure 2.1 Relation Between Robotics and Automation  

(SOURCE: Springer Handbook of Automation, Springer, 2009) 

Automation is a general term for a platform that can operate independently 

without human interaction. Automatos in Greek is the origin of the word of this term, 

meaning acting with its own will or spontaneously. The platform involves machines, 

electronic devices, and systems created by humans to carry out a series of activities. 

Automation is also closely related to other terms, such as mechanization, cybernetics, 

artificial intelligence, and robotics (Figure 2.1). Some industrial fields have used 
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automation in facilitating jobs, such as factories, elevators, smart homes, smart cities, and 

agriculture. 

Currently, the agricultural sector has entered a new era related to the processes 

that must be done, ranging from soil preparation, sowing, manure, fertilizers, irrigations, 

protection from pests, harvesting, and storage. Each of these processes requires a lot of 

effort, especially soil preparation, especially land piracy. Therefore, automation is needed 

in these processes, especially land piracy.  

This research will create an agricultural automation platform, especially in the 

process of land piracy. Before starting the discussion on technical and implementation 

requires a study of basic theories and a review of the literature from previous research. 

This Chapter will be discussed several topics relevant to research, including the 

following: 

1. Literature Review 

2. 2WD Hand Tractor 

3. Internet of Things 

4. Embedded System 

5. Data Fusion 

6. Inertial Navigation System (INS) 

7. Global Positioning System (GPS) 

8. Compass Sensor 

9. Camera as Sidewalk Detection 

10.Kalman Filter Algorithm 

11.Coverage Path Planning 

12. GPS Waypoint Navigation 

 

  



 

24 
 

2.2 Literature Review 

In this research, some of these technologies will be combined and produce a 

2WD tractor that can run automatically in rice fields. Developing countries like Indonesia 

are dealing with the issue of dwindling agricultural land. According to the Indonesian 

Central Statistics Agency, there was a significant reduction in agricultural land from 2014 

to 2018 (Adiyaksa & Nugroho Djojomartono, 2020; Ardli Swardana, 2020). One reason 

is that the effort spent cultivating or ploughing the land is not worth it to the income 

obtained by farmers (Wulandari et al., 2017). This is what makes farmers decide to 

convert their agricultural land. Of course, this will be a serious problem for Indonesia's 

food security. Therefore, combining conventional agriculture with technology in the form 

of a tractor that can operate automatically to help farmers plow the paddy fields is needed. 

Advanced technologies such as embedded systems, robots, sensors, GPS, and image 

processing profoundly influence how modern agriculture works. This progress is more 

efficient, safer, profitable, and environmentally friendly (Roldán et al., 2018).  Several 

studies on precision agriculture, positioning, navigation using GPS and several sensors 

have been carried out on large four-wheel tractors. The recoding platform was developed 

using a combination of several sensors to read environmental conditions such as lidar, 

cameras with various resolutions, IMU, and GNSS (Global Navigation Satellite System) 

(Kragh et al., 2017). 

 

Figure 2.2 Platform for Recording 

(SOURCE: FieldSAFE: Dataset for obstacle detection in agriculture, 2017) 

To improve the accuracy of tractor position detection, research has been 

conducted on multi-GNSS receivers on large four-wheel tractors (Guo et al., 2018). 



 

25 
 

Several other studies using four-wheel tractors have also been developed and tested (Binh 

et al., 2019; H. Wang & Noguchi, 2019b).  

 

Figure 2.3 Multi GNSS receivers 

(SOURCE: Multi-GNSS precise point positioning for precision agriculture, 2017) 

However, based on researcher knowledge, the data set and platform available 

today only on large tractors with four wheels. Some of the sensors used are quite 

expensive to purchase by farmers in Indonesia. Therefore, this research presents the data 

set, design, manufacture, and implementation of automation on a two-wheel drive small 

hand tractor. GPS, accelerometer, gyroscope, compass, and camera will be used as input 

data and collected. Meanwhile, the automation process will be done by fusing GPS and 

IMU using the Kalman filter algorithm. Kalman filter was chosen because it has several 

advantages, such as light memory usage with good accuracy, making it suitable for real-

time problems and embedded systems (Ahmadi Jeyed & Ghaffari, 2019; X. Han et al., 

2017; H. Kumar & Pimparkar, 2018; T. Wu & Hung, 2017).  The camera data are also 

collected to detect objects around the tractor and detection of rice field sidewalks using 

an image processing algorithm. All data from these sensors will be processed on an 

ESP32. This microcontroller is used as the main processing tool of the tractor embedded 

control system. 
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Table 2.1 Table Literature Review  

 

Source Research Type of Article/ 

Theory/ 

Research/ etc. 

Similarities Differences 

M. F. Kragh 

(2017) 

FieldSAFE: 

Dataset for 

obstacle 

detection in 

agriculture 

(Figure 2.2) 

This article 

describes a multi-

modal dataset for 

agricultural 

obstacle 

identification 

utilizing a large 

four-wheel tractor. 

Collecting 

data about 

navigational 

in 

agriculture. 

Data collection 

was carried out 

on two different 

types of 

tractors. This 

study did not 

use a two-wheel 

tractor. 

J. Guo et al. 

(2018) 

Multi-GNSS 

precise point 

positioning 

for precision 

agriculture 

(Figure 2.3) 

Through a series of 

studies on four-

wheel tractors, the 

accuracy of GNSS 

RTK (Realtime 

Kinematic) was 

determined. 

Measuring 

the level of 

accuracy of 

the 

navigation 

system. 

This study uses 

tools and 

technologies 

that are quite 

expensive for 

Indonesian 

farmers.  

H. Wang 

and N. 

Noguchi 

(2019) 

Navigation 

of a robot 

tractor using 

the 

centimeter 

level 

augmentation 

information 

via Quasi-

Zenith 

Satellite 

System 

This article aims to 

describe tractor 

control using 

Centimetre Level 

Augmentation 

Service (CLAS) 

technology 

obtained from a 

commercial Quasi-

Zenith Satellite 

System (QZSS). 

Evaluate the 

tractor's 

navigation 

control 

system. 

This research 

does not use an 

open-source 

path planning 

platform and 

cameras as 

sidewalk 

detectors in rice 

fields. 

X. Han et 

al. (2017) 

Development 

of a low-cost 

GPS/INS 

integrated 

system for 

tractor 

automatic 

navigation 

Three Garmin GPS 

19x HVS were 

utilized to create a 

low-cost 

navigation system 

using a 

triangulation 

method. 

Developing 

a low-cost 

auto-

navigation 

system for 

tractors 

The research is 

currently in the 

prototype stage 

and has not 

been 

implemented 

directly on 

tractors; 

sidewalk 

recognition has 

not been 

accomplished 

through 

cameras, nor has 

a produce path 

planning system 

been utilized. 
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2.3 2WD Hand Tractor 

 
Figure 2.4 Three-Dimensional Model of Walk-Behind-Type Hand Tractor 

(SOURCE: Hand-Fed Vegetable Transplanter for Use with a Walk-Behind-Type Hand 

Tractor, 2018) 

Two-wheel tractors, often referred to as power tillers, single-axel tractors, walk-

behind and hand tractors have a versatile design that can be used in various land 

conditions such as rice fields and soil, terracing, and gardens (Dihingia et al., 2018; 

Negrete, 2020). This tractor functions as a land hijacker, controlling rotors and rakes, 

making trenches, and even transporting (Figure 2.4). This device is an evolution of the 

concept of a wheeled carrier pushed by animals (Nwakaire et al., 2018).  

 
Figure 2.5 Two-Wheeled Tractor Mexican Design 

(SOURCE: Analysis of the current situation of two wheels tractors in Mexico, 2020) 
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A hand tractor is an agricultural machine used to cultivate the land and other 

agricultural work with an earth-moving tool installed on the back of the machine. This 

machine has high efficiency compared to bullock power [65, 66], because ground turning 

and cutting can be done simultaneously (Figure 2.5). This machine is a multipurpose 

machine because it can also function as a driving force for other tools such as water 

pumps, processing tools, trailers, and others. As a field ploughing machine, the tractor 

must be equipped with soil processing equipment, such as a chop plow, rake or rotary 

plow. To know a tractor as a ground processing machine, it is necessary to understand the 

working principles and requirements of working conditions, equipment, and their use. 

Hand tractors with a V-shaped frame are the most widely used machines in the paddy 

field ploughing process in Indonesia (Figure 2.6) (Dewangan & Tewari, 2009; Lakitan et 

al., 2019; Shiotsu et al., 2015).  

 

Figure 2.6 V-Shaped Hand Tractor Machine (Quick G-1000 Type) 
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2.4 Internet of Things 

 

Figure 2.7 Internet of Things 

(SOURCE: The Internet of Things: A survey, 2020) 

The Internet of Things (IoT) is a collection of embedded technology that 

includes wired and wireless communication, sensors and actuators, and physical things 

that are linked to the Internet (Figure 2.7) (Atzori et al., 2010; Cecchinel et al., 2014). The 

Internet of Things (IoT) and the Unmanned Agricultural Vehicle (UAV) are two 

emerging agricultural technologies that are converting old farming techniques into a new 

era of precision agriculture (Boursianis et al., 2020). Over the past few years, agriculture 

has experienced its fourth revolution (Agri-food 4.0) by integrating Information and 

Communication Technology (ICT) in traditional agricultural practices (Lezoche et al., 

2020). Technologies such as Remote Sensing, the Internet of Things (IoT), Artificial 

Intelligence (AI), and Unmanned Agricultural Vehicles (UAV), are developing rapidly 

and enabling innovations in agriculture. (Mahbub, 2020; Sharma et al., 2020).  

With the presence of IoT in the agricultural environment, several physical 

parameters can be measured in real-time and increase aquaculture production (Nukala et 
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al., 2016). This technology is needed by various markets that require wireless data 

transmission. The sensing and communication platforms used in unmanned agricultural 

vehicles are a novelty with exciting potential in precision agriculture (Zhang & Kovacs, 

2012). Several technologies, such as smart sensors, Low Power Wide Area Network 

(LPWAN), Long Distance Wide Area Access Network (LoRaWAN), Internet of Things 

(IoT), and others, are currently being used in precision agricultural data acquisition, data 

processing, evaluation and implementation. (Balafoutis et al., 2020). 

2.5 Embedded System 

 

Figure 2.8 Illustration of IoT technologies for smart agriculture 

(SOURCE: IoT-empowered smart agriculture: A real-time light-weight embedded 

segmentation system, 2017) 

When the embedded system and automation concept meets agriculture, farming 

will be upgraded to the next level and become Smart Agriculture or Precision Agriculture 

(Figure 2.8) (Abouzahir et al., 2017). The application of smart agriculture is very easy to 

do by using an embedded system based on a microcomputer. An embedded system can 

simultaneously measure surrounding environmental conditions and control some of the 

actuators as a response (Lakhwani et al., 2019). Data collection and control were handled 

using a TTGO T-Call Esp32 sim800l to find ways to make experimentation more 

accessible and portable. The TTGO T-Call ESP32 Sim800l is a tiny device that supports 

the MQTT data handling and retrieval protocol. This device includes a 3G / 4G internet 
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module with a nano sim card, so it does not require additional access modules (Journal, 

2021).  

2.6 Data Fusion 

Data Fusion is an extraordinary concept, which can be found in almost any part 

of modern technology that involves any kind of sensing or automation such as a 

smartphone or a car. This allows for extraordinary engineering achievements and their 

use to increase dramatically over time with new automation technologies such as self-

driving cars. Overall, data fusion combines many data sources to create a picture that is 

more accurate, full, and resilient than any single data source. More specifically, the 

researcher will look at the most common use of data fusion: sensor fusion or multi-sensor 

fusion. This is the process by which researchers can take data from sensors and other 

sources of information and turn it into useful information (Bar-Shalom et al., 2011; 

Bleiholder & Naumann, 2009; Castanedo, 2013).  

Data fusion from inertial sensors is the most common type used to get an 

orientation and location estimation of objects by integrating accelerometers and 

gyroscopes. However, this sensor has a weakness in the form of bias and sensor deviation, 

this problem is prone to occur in low-cost Microelectromechanical System (MEMS) 

gyroscope sensors. Some studies also combine the inertial sensor with a magnetic sensor. 

In addition, in some applications, these sensors are often combined with GPS (El-Sheimy 

& Youssef, 2020; Jain & Kanhangad, 2018; Ludwig & Jiménez, 2018; Sarkka et al., 

2017). 
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2.7 Inertial Navigation System (INS) 

 

Figure 2.9 Inertial navigation system (INS) 

An INS is a self-contained navigation system that may provide data on an 

object's speed, position, and orientation. A three-degree-of-freedom (DOF) accelerometer 

and a three-degree-of-freedom (DOF) gyroscope are usually used for these navigation 

systems to measure angular velocity and linear acceleration, respectively (Figure 2.9). 

These systems can usually only provide accurate solutions for a short period of time. 

Because the position is double integrated, any mistakes in the acceleration measurement 

are also integrated, resulting in a bias in the velocity estimation and aberrations of the 

INS's position estimate. In addition, when doing this integration, the INS code needs to 

use the approximated angular position of the accelerometer. The angular position is often 

tracked using the gyroscope sensor's angular rate integration. This also introduces an 

unknown bias into the integration process for determining the unit position (Berrabah & 

Baudoin, 2011). Therefore, it is necessary to integrate INS and GPS to get more accurate 

results. 

2.8 Global Positioning System (GPS) 

GPS technology was developed in the 1970s and is still evolving. In terms of 

accuracy, availability, and stability, significant improvements have indeed been 
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implemented. Standard Positioning Service (SPS) and Precise Positioning Service (PPS) 

are indeed the two key services provided by this technology (Figure 2.10). SPS is a free 

service that billions of worldwide civic and commercial users can utilize immediately. At 

the same time, PPS is a form of encrypted service that is only intended for military and 

government purposes. The application of SPS allows users to enjoy services through 

various devices such as smart watches, gadgets and smartphones, mostly utilizing signals 

from GPS (Kaplan & Hegarty, 2017). 

 

Figure 2.10 GPS Satellite Constellation 

(SOURCE: IoT-empowered smart agriculture: A real-time light-weight embedded 

segmentation system, 2017) 
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2.9 Compass Sensor 

 
Figure 2.11 Compass Sensor GY-271 HMC5883L 

Determining the direction of the magnetic has become one of the oldest methods 

to detect heading and orientation. When aligned with the Earth's magnet, the magnetic 

needle and its position are utilized as information on a thing's direction to estimate the 

magnet's north direction. MEMS is a technology used to manufacture electric 

magnetometer sensors by transferring magnetic fields into electrical signals. This 

technology uses three orthogonally installed magnetometers (Figure 2.11), in which there 

is also an analog-to-digital converter to digitize the magnetometer's electrical signal. In 

addition, there is also data roll and pitch angle from the compass sensor on the digital 

magnetic compass (Figure 2.12).(Livada et al., 2019) 

 
Figure 2.12 Compass Sensor Basic Configuration 

(SOURCE: Digital magnetic compass integration with a stationary, land-based electro-

optical multi-sensor surveillance system, 2019) 
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2.10 Camera as Sidewalk Detection 

Some research on sidewalk feet on the highway has been done to make it easier 

for pedestrians, especially the blind to navigate. (Cohen et al., 2020; Jinghong et al., 

2018). But in Indonesia sidewalk is not only available on the highway, there is also a 

sidewalk in rice fields to make it easier for farmers to navigate. Sidewalk of rice fields 

has different characteristics from other sidewalks, especially in its colour combination 

(Figure 2.13).  

  

  
Figure 2.13 Rice Field Sidewalk 

 

2.11 Kalman Filter Algorithm 

Kalman Filter is a method used to combine complex data into simpler problems 

(Figure 2.14). This method is widely used in performing data fusion and estimation. This 

allows users to do and build things that were impossible before. This method is generally 

applied directly in complex dynamic systems, such as those used in guidance, navigation 

and control of cars, ships, planes, and spacecraft. Kalman Filters are widely used in 

robotics and manufacturing and are applicable to almost all time series analysis such as 

those used in signalling, economics, stock market predictions, finance and many more. 

The Kalman Filter was chosen after its inventor, Rudolph Emil Kalman, who was born in 

Budapest in 1930. This method is generally applied directly in complex dynamic systems, 

such as those used in navigation. (Anitha, 2018; Kitiashvili, 2019; Togashi et al., 2018). 
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Figure 2.14 Kalman filter for the GPS/INS integration 

(SOURCE: Robust Navigation @ FOI View project Collaborative GPS/INS Navigation 

in Urban Environment, 2004) 

2.12 Coverage Path Planning 

 

Figure 2.15 Simple Flight Pattern in Polygonal Areas 

Coverage path planning (CPP) is a method used to find the route of a Region of 

Interest (ROI) (Figure 2.15). This method is widely used to create a flight route for 

Unmanned Aerial Vehicles (UAV) in several application domains namely smart farming, 

surveillance, 3D mapping, cleaning and tracking (Roldán, 2018)(Wang, 2019)(Han, 

2017). CPP can also be applied as a guide for tractors in navigating from one point to 
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another in one rice field. The difference in its application in the field, UAVs can navigate 

freely even though they have passed the ROI while the tractor cannot pass the 

predetermined limit. This method will be applied to a Geographical Information System 

(GIS) with HTML and JavaScript frameworks. 

2.13 GPS Waypoint Navigation 

GPS technology is closely related to the waypoint. A waypoint is a set of 

position points/coordinates that have been stored (Figure 2.16). This point is a destination 

or intermediate point that must be passed. Waypoint has a standard form in its storage, 

namely with longitude and latitude formats. When one or more waypoints must be passed, 

this is referred to as a route or path. The sequence of points will significantly impact the 

route/path of the robot's journey.  Several studies have also been conducted and produce 

waypoint navigation products in various fields (Wu, 2017) (Ahmadi,2019).   

 

Figure 2.16 GPS Waypoint Route/ Path  
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Theoretical Framework 

 

Figure 3.1. Methodology Diagram 

Smart farming is the crown jewel of the technological advancement of 

agriculture. The literature review has given several investigations on rather expensive, 

high-end technology. Therefore, research is required to explicitly address Indonesian 

farmers' demands for low-cost technology compatible with the instruments they employ 

(two-wheel hand tractors). This research involves the integration of hardware and 

software based on system specification requirements. In the first phase, the system 

requirements are determined and then continued at the purchasing of all hardware 

components according to their specifications. The prototype specification phase included 

hardware prototype design and development. This prototype is field tested using the 
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Tractor type of quick G 3000 and G 1000. TTGO T-Call ESP32 Sim800l is selected with 

several sensors connected to it. While waiting for the components to arrive, the prototype 

software is implemented using the Arduino IDE software interface. The software's coding 

is then tested on a series of hardware devices. Furthermore, hardware and software testing 

are carried out repeatedly. Finally, software and hardware integration will be performed, 

hardware components will be assembled on the board, and all experimental results will 

be recorded.  

3.2 System Requirement 

 

(a) 

 

(b) 

Figure 3.2. (a) Quick G3000 (b) Quick G1000 

The first stage of this research is the system requirement. At this stage, an 

analysis will be carried out about the needs of the software and also the needs of the 

hardware (electronic and mechanical components) to be used. The tractors used as tests 

are Quick G3000 and G1000 tractors. Farmers in Indonesia widely use both tractors, and 

they are controlled in the same manner. The main distinction between the two tractors is 

in their weight, frame design, and gear box preparation. G1000 tractors are still widely 

used because they have a lighter weight when compared to the G3000 type.  
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Table 3.1 Quick G3000 Tractor Specification 

 

Table 3.2 Quick G1000 Tractor Specification 

 

  

Brand/Model QUICK / G 3000 ZEVA 

Speed 1 Forward 

Transmission System Combination (Gear-Chain) 

Gear Case Casting Dual Part System 

Main Clutch V-Belt (2 pcs) & Tension Pulley 

Steering Clutch Dog Clutch (4 pcs, large) 

Lubricant – SAE 90-140 Oil 5.5 Litre 

Dimension with 

Cage Wheel or Tyre 

Length (mm) 2725 / 2725 

Width (mm) 1130 / 865 

Height (mm) 1430 / 1360 

Weight without engine 

(kg) 
214.8 / 165.2 * 

Weight with engine 

(kg) 
depends on the engine 

Capacity (8.5 HP 

and single plough) 

Paddy field (hr/Ha) ± 10.28 ** 

Dry field (hr/Ha) ± 9.53 ** 

 

Model QUICK / G 1000 BOXER 

No. of speed 1 forward (two-way pulley) 

Transmission Combination (Gear-Chain) 

Gear Case Casting Dual Part System 

Main clutch V-Belt (2 pcs) & Tension Pulley 

Steering Clutch Dog Clutch (4 pcs, large) 

Lubricant (Viscosity Grade) 5.5 Litre (SAE 90-140 oil) 

Dimensions (Cage 

Wheel / Tyre) 

Length (mm) 2750 / 2750 

Wide (mm) 1130 / 860 

Height (mm) 1410 / 1275 

Weight with Kubota 

RD 85 DI – 2S engine 

(kg) 

292.8/ 253.8 * 

Capacity 

(using 8.5 HP 

engine and single 

plow) 

Paddy Field (hr/Ha) ± 10.46 ** 

Dry land (hr/Ha) ± 9.90 ** 
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3.3 Hardware Design, Assembly, and Testing 

 

Figure 3.3. Tractor Clutch Handle 

 

At this stage, several modifications were made to the Quick 2WD Tractor 

manufacturer with the G3000 and G1000 types. Modifications were made to five parts of 

the tractor, i.e. Head of Handle Bar, Steering Linkage, Tension Handle and Main Pipe. 

Each part will be given a mechanical design and an additional actuator so the tractor 

movement can be controlled remotely before becoming automatic. The G3000 and G1000 

tractors have a similar movement control system. Both use two wheels to manoeuvre over 

paddy fields. Each wheel is driven by pulling two Clutch Handles independently or 

simultaneously. A pulled Clutch Handle will move the steering linkage, shifting rod and 

shifting lever. If the left Clutch Handle is pulled, the tractor will turn left and vice versa. 

But if the operator does not pull both of them, then the tractor will run straight and if both 

are pulled, then the tractor will stop. Figure 3.3 illustrates the direction of the tractor 

movement. 
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Figure 3.4 Hardware Controller Design 

The G3000 and G1000 tractors have a similar movement control system. Both 

use two wheels to manoeuvre over paddy fields. Each wheel is steered by individually or 

simultaneously dragging two Clutch Handles. A pulled Clutch Handle will move the 

steering linkage, shifting rod and shifting lever. If the left Clutch Handle is pulled, the 

tractor will turn left and vice versa. But if the operator does not pull both of them, then 

the tractor will run straight and if both are pulled, then the tractor will stop. 

3.4 Software Design and Deployment 

 

Figure 3.5 Android- Arduino Application  
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This phase consisted of two parts: design and development of the software 

embedded onto the Arduino microcontroller as the slave and Android software as the 

master. As a master, the Android software will send commands in the form of a message 

to Arduino. Software embedded onto the Arduino functioned as the slave to receive the 

message sent by the Android software through Bluetooth communication. The message 

received was then identified to obtain a set of sequence commands to do the update value 

towards a number of actuators such as DC or servo motors. Once the message was 

identified, the command was issued to write the value to each actuator later on, resulting 

in tractor mobility based on the values executed by the software. Android Software acts 

as the master of message sender to Arduino. This software shows the list of Bluetooth 

available surrounding and then connects them. Once they are connected, users can select 

the commands available. The selected commands are then sent in the form of messages 

through the Bluetooth communication.  

 

Figure 3.6 GPS Waypoint Design 

After the tractor is modified and can be controlled, then a navigation system is 

developed for the user. Users will be able to define the boundary points of their farmland. 

Based on these points, a zig zag waypoint will be generated as a path to be followed by 

the tractor. The initial simulation of the tractor will be developed using Python (Appendix 

1 and Appendix 2) and then implemented into HTML so that it can be integrated into an 

IoT web-based system. The application interface design of the Region of Interest 

application can be seen in Figure 3.7, while the application interface design of the path 

planning generator can be seen in Figure 3.8. 
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Figure 3.7 HTML Java Script Region of Interest Application Design 

 

 

Figure 3.8 HTML Java Script Path Planning Generator Application Design 

 

3.5 Procedure of the Data Collection 

At this stage, an IoT-based system for retrieving and collecting environmental 

data is being developed. Data is collected using a variety of sensors, including GPS, 

accelerometer, gyroscope, magnetometer, GPS, and camera. Instead of using a tractor, 

GPS is used to retrieve location data based on longitude and latitude. The tractor's position 
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and direction are estimated using accelerometer, gyroscope, and magnetometer sensors. 

The data will be processed using the Kalman Filter data fusion algorithm. An preliminary 

research was conducted in this study to detect sidewalks from rice fields using camera 

images captured. The results of this camera vision detection are not used to make tractor 

movement decisions. 

 
Figure 3.9 Data Collection Using IoT 

 
Figure 3.10 Cameras Possition 

3.6 Hardware Software Integration and Testing 

The last stage of this research is testing the automatic control system that has 

been developed. The test will be carried out using a miniature tractor that has the same 

movement as the G1000 tractor type. Path planning applications, waypoints, electronic 

circuits, and actuators will be tested as part of the integration. Testing will be done in an 

open area. 
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Figure 3.11 System Overview 

3.7 Path Planning Related Works 

Over the last few decades, path planning problems have been addressed 

extensively; nevertheless, the available literature focuses primarily on UGV and UAV 

difficulties. There are a variety of strategies and algorithms that can be employed with 

ground robots; in general, path planning based on ROI can be classified as solid or border 

representations. NP-Hard problems are used as a base to path planning with solid-

representation approaches; it is emphasized on interiors rather than regions (Arkin, 

Fekete, and Mitchell 2000). Generally, the interior of an environment is represented as a 

grid of binary values or probabilities (Moravec & Elfes, 1985). This method is also known 

as the grid-based method (Galceran and Carreras 2013). This resolution-complete 

approach takes a significant amount of computer power for high-resolution maps.  The 

grid-based process makes use of a neural network in which the region is the input (Zhu 

et al., 2019), divides into triangular cells, and in conjunction with a region growth 

algorithm, generates a path (Asadi et al., 2020), utilizing a Turing machine (Song & 

Gupta, 2018), or by using a genetic algorithm (Kapanoglu et al., 2012). In addition to 

solid representation, the boundary representation approach defines the region of interest 

(ROI) depending on the geometry of the polygon. The polygonal model is adopted in this 
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study. There are still numerous literature evaluations on alternative path planning 

approaches (Galceran & Carreras, 2013). 

One of the most extensively used polygonal representations is Boustrophedon 

Cellular Decomposition (BCD); this method provides a path planning solution for 

traversing the polynomial world (Choset & Pignon, 1998). BCD generates a line using 

the idea of cells and then explores each cell using this manner, except that the robot's 

direction of movement is always the same. Huang (Huang, 2001) developed another 

coverage approach for mine operating robots that uses alternate orientations 

perpendicular to the ROI range instead of polygons. However, this method ignores the 

trip distance between the starting point and the ROI. Numerous studies have been 

conducted on the covering of non-convex terrain. The fundamental difficulty in this 

strategy is to acquire a near-optimal ROI partition and then map the coverage path to visit 

each division sequentially (An et al., 2020); in some circumstances, other restrictions like 

energy consumption are incorporated into the optimization process (Wei & Isler, 2018). 

In this paper, researcher focus exclusively on the convex region. 

Path planning with UGVs has been generally approached from the standpoint 

of land-based mobile robotics but with novel functionalities. The majority of approaches 

adhered to Huang's optimality criteria (Huang, 2001), where the ideal path is the one with 

the fewest paths. (Y. Li et al., 2011) provides techniques for calculating the area of convex 

polygons. Convex covering area method is presented in research (Santos et al., 2020). 

Numerous researchers have also used path planning in agriculture, including UGV, to 

determine the ground features of greenhouses (Ruiz-Larrea et al., 2016) by utilizing the 

BFP technique and a differential robot. 

Further (Ohi et al., 2018) created a robot for precision pollination in a 

greenhouse and implemented it on a differential robot. Path planning for an unmanned 

ground vehicle in conjunction with aerial images utilizing the A* search method in graphs 

with gradients Optimization of the descent to smooth the trajectory (Zoto et al., 2020b). 

Large tractor machines are used; this work optimizes the harvest area of a combined 

harvester robot for wheat or rice using convex and concave polygon fields(Rahman et al., 

2019). 
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In short, the prior approach ignored the dynamic size of the tractor puddler, 

limiting its application to a single vehicle, and the approach was limited to establishing 

the beginning point and the Tractor with huge dimensions. As a result, the initial 

approximation is inadequate. A more accurate path can be obtained by combining the 

dynamic starting inputs for the interval distance, start point, and finish point and then 

applying these to the brief walk behind the Tractor. Abbreviations and symbols used in 

the article are listed in Table 3.3.  

Table 3.3. Abbreviations and symbols are used in this article. 

 

3.7.1. General Definition and Notation 

The Tractor in this study moves in a two-dimensional planar plane, where L is 

a linear combination (Figure 4.38), as in the formula (1). The distance between point a 

and line L is the perpendicular distance between c and a point on L (2). The distance 

between parallel lines L1 and L2 is denoted by (3). Equation (4) shows a line segment as 

a horizontal line linking two points, c and d. (Preparata & Shamos, 2012) 

R2 two-dimensional (2D) planar 

tractor work area 

φ1 latitude of the initial point 

(x, y) within the work area, a point is a 

location 

φ2 latitude of the final point 

L line as a linear combination of 

two points 

Δφ φ2 – φ1 

a, b, c, d four points within a Region of 

Interest (ROI) 

λ longitude 

Q the region of interest λ1 Longitude of Initial Point 

V a collection of points on a plane 

(vertices) 

λ2 Longitude of Final Point 

E a group of edges Δλ λ2- λ1 

A(Q) polygon area earth's_radius 6,371km 

Ix tillage footprint length d distance between two 

points 

Iy tillage footprint width ps starting point 

p tractor position pf finish point 

p1, p2 two points on the coverage area of 

the Puddler 

p0 . . . pn knot edge path 

C(T) the coverage area of a tillage line dx distance between tillage 

line 

φ latitude δ declination angle 

dst distance between two parallel 

lines 
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Region of Interest (ROI) 

 

As seen in Figure 4.38, The ROI in this study is in the form of a 2D planar 

(convex polygon) (5), where a collection of vertices and edges is represented by the 

formula (6)(7) (Preparata & Shamos, 2012; Vasquez-Gomez et al., 2020). L is the support line 

formed by the intersection with the polygon boundary line and forms a pair of antipodal 

points. The distance between the two support lines is created on the same polygon and is 

named width (Y. Li et al., 2011). When the Tractor is used for tillage operations, it is 

equipped with a puddler that points directly to the ground at a consistent harrow height. 

The tractor location is defined as p = (x, y) in R2, which allows for the definition of the 

tractor path as s(t): R → R2. 

3.7.2. Two-Dimensional Leveller/Puddler Footprint 

When the Tractor plows an area, the Tractor departs from point ps, following 

the path by carrying a puddler and heading to the finish point pf (see figure 1.1). During 

the tillage process, the Puddler forms an area known as the tillage footprint of Ix × Iy so 

that the tillage footprint can be represented by equation (8). If s is the tillage path, then 

equation (9) is the coverage area (ρ) of the Puddler, and each waypoint of Q is represented 

in equation (10). The tractor tillage mission overview is represented in Figure 3.12. 

 

[c, d] = L(α) = (1−α) c + d → α ∈ R  (1) 

dst (a, L) = dst(a, b) → b ∈ L, [c, d] ⊥ L  (2) 

dst (c ∈ L1, L1)  (3) 

𝑐𝑑    = T (α) = (1- α) c + αd → 0 ≤ α ≤ 1  (4) 

 

Q = {V,E}  (5) 

V = {1, . . . ,n}  (6) 

E = {(1, 2), . . . , (n – 1, n), (n, 1)}  (7) 

 

Tl(p) = Ix × Iy  (8) 

C(s) = ∪p∈s Tl(p)  (9) 

A(Q) ⊆ C(ρ)  (10) 
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Figure 3.12. Top and Perspective View of Tractor. 

3.7.3. Back and Forth Path (BFP) 

In path planning, many possible path forms are created (Arkin et al., 2000). So, 

particular patterns such as spirals, zig-zags, stars, or back and forth are the solution to 

these problems. In this study, the BFP is implemented on a tractor that moves in a straight 

line at ROI. The advantages of BFP allow the Tractor to keep the Puddler stable and make 

it easy for autonomous vehicles to follow the tillage line. 

 

Figure 3.13. Area covered when the Tractor crosses the T tillage line 
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Tillage line T is a linear combination equation (11), which means that α ∈ R and 

0 ≤ α ≤ 1 as seen in Figure 3.13. C(T) is the region enclosed by Tleft and Tright. These 

two lines are parallel to T by an  
𝐼𝑥

2
 distance. When tillage occurs at an ROI, one tillage 

line is insufficient to cover the entire area, so plowing with a BFP pattern is used in 

equation (12). Equation (13) is used to calculate the coverage area of Q. 

 

These calculations deduce that BFP is a collection of sequential points used as 

a plowing route boundary or waypoint connected with a straight line between tillage lines. 

This research aims to develop a path planning platform for rectangular ROI convex 

polygons and validate the autonomous walk-behind hand tractors algorithm. 

3.8 Embedded System Platform 

Walk-behind tractors (affectionately referred to as walking tractors, pedestrian-

controlled tractors, or power tillers) are prevalent in small and medium-sized rural 

communities. This Tractor offers several advantages, including its low price and ease of 

use. Additionally, these tractors can perform various agricultural tasks, including 

harvesting, crop protection, irrigation, threshing, and transporting (G. V. P. Kumar & 

Raheman, 2011). A G1000 Quick tractor equipped with a boxed embedded control system 

was used in this study. The Tractor's wheels turn due to a clutch handle being pulled. This 

platform is used to validate the path planning platform. 

An autonomous navigation system enables tractors to navigate between 

waypoints autonomously (Gan & Lee, 2018). Researcher are attempting to construct an 

additional validation platform with limited funds. First, the list of waypoints generated 

by the platform informs of the final Global Positioning System (GPS) coordinates 

(longitude and latitude). The platform will then build a set of reference pathways (straight 

lines) that connect each waypoint. Additionally, these coordinates are used in a control 

system to direct the robot's movement between waypoints along the reference route. The 

results obtained from the GPS and IMU sensors contain a significant amount of noise. 

T (α) = (1- α) p1 + α p2  (11) 

P = {T1, . . . , Tn}  (12) 

A(Q) ⊆ ∪ F∈P C(T)  (13) 
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This will obviously interfere with the tractor's movement system, hence the application 

of a filter in this system is essential. Kalman filter was selected because to its superior 

input stability for the controller. The controller, not the Tractor, determines the distance 

and heading. Figure 3.14 depicts the relationship between GPS sensors, IMU 

(Magnetometer), and Waypoint Techniques as inputs and outputs rather than controllers 

as servo motor drives. 

 

Figure 3.14. Waypoint System Overview 

GPS technology is used to determine the current location of the Tractor using a 

GPS receiver (Berber et al., 2012). GPS technology is the backbone of the Autonomous 

Vehicle because it receives GPS coordinates from the location; the U-Blox Neo-M8N 

type sensor is used in this study. As indicated in Table 3.4, this type of GPS was chosen 

because it is economical for Indonesian farmers and offers a reasonable degree of 

precision. 

Table 3.4 Neo M8N First Fix and Horizontal Accuracy 

 

After the tractor location is obtained, the distance between the current tractor 

position and the target position is calculated using the Haversine equation (14)(15)(16) 

(Karataş et al., 2021). In addition to distance, bearing angle is an essential metric for 

autonomous robotics as it indicates the robot's direction and helps the Tractor follow the 

Parameter Condition GPS GLONASS BeiDou 

First fix time Cold start 29s 26s 27s 

 Hot start 1s 1s 1s 

Horizontal 

accuracy 

Autonomous 2.5 m 2.5 m 2.5 m 

 SBAS 2.0 m 2.0 m 2.0 m 
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correct path (Karataş et al., 2021). The angle of the Tractor bearing concerning the initial 

latitude and longitude coordinates can be calculated using the equation (17)(18)(19). 

 

The heading angle is obtained from the magnetometer sensor found on the IMU. 

This sensor can provide an absolute correct direction, but its efficiency is reduced when 

a magnetic field other than the Earth's magnetic field is present (Fouché & Malekian, 

2018). One source of significant magnetometer error is the annual variation in the tilt of 

the Earth's axis of rotation and the Earth's rotation around the sun, also known as the angle 

of declination. The declination angle can be determined using the equation (20), where a 

day is the number of days remaining before January. The declination angle should be 

added to the sensor-derived compass direction (Fouché & Malekian, 2018). This 

inaccuracy varies according to the sensor's location and can be found at 

https://www.magnetic-declination.com/(Magnetic-Declination.com, 2022). For instance, 

in Gianyar, Bali- Indonesia, the declination is 0° 43' EAST (POSITIVE). Autonomous 

UGVs require knowledge about their travel direction. The heading angle in the horizontal 

plane is defined as the angle measured clockwise from true north (Karataş et al., 2021). 

As a result, headings that rotate between 0° and 360° refer to true north (21). 

 

3.9 RIFIS (Rice Field Sidewalk Detection) Related Works 

In this study, we have reviewed the publication of publicly available rice field 

image datasets. These datasets include (Kiratiratanapruk et al., 2020; Nguyen et al., 2021; 

Shao et al., 2021; H. Wang et al., 2021; Yakkundimath et al., 2022; Yang et al., 2021) 

with details which can be seen in Table 1. This section presents the purpose, attributes, 

and differences between the dataset and the dataset we collected. In this study (H. Wang 

et al., 2021), high-resolution image-based deep learning approaches were used to panicle 

x = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin² (Δλ/2)  (14) 

y = 2 ⋅ atan2(√a, √(1−a))  (15) 

d = y. earth’s_radius  (16) 

x = sin (Δλ) cos (φ1)  (17) 

y = cos (φ1) ⋅ sin(Δφ2) - sin (φ1)⋅ cos (φ2) cos (Δλ)  (18) 

Bearing Angle = atan2 (x, y) ⋅ 180/π  (19) 

 

D= sin-1(sin (23,45˚) ⋅ sin (360/365⋅ (day-81)) (20) 

heading = atan (𝑌ℎ/ 𝑋ℎ) (21) 
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datasets. The semi-supervised deep learning model training procedure was performed to 

annotate and modify the training data set. UAV Seedling dataset(Yang et al., 2021), this 

research is focused on the annotation of the UAV picture dataset. The dataset was 

obtained using a UAV with many rotors that flew over rice fields to collect data. In 

addition, semi-automatic annotations are introduced to provide training data for rice 

seedling detection. Rice ear dataset(Shao et al., 2021), this research provides a dataset of 

3.300 rice ear samples that illustrate a variety of complex conditions, such as variable 

light and complex backgrounds, rice and leaves that overlap. The acquired photos were 

manually tagged, and a data improvement technique was employed to expand the sample 

size. Research (Kiratiratanapruk et al., 2020), examined six major rice cultivars. The rice 

disease database contains images of rice leaves collected from the planting area's farms. 

Pictures are taken under an unmanaged natural environment. Using an RGB 

camera(Nguyen et al., 2021), captures leaf disease picture data from rice plants. This 

study was conducted in the Mekong Delta (VMD) rice fields in Vietnam. This 

study(Yakkundimath et al., 2022) is also concerned with detecting rice illnesses. A DSLR 

camera was used to collect 1200 experimental photographs from a rice farm located on 

the University of Agricultural Sciences (UAS) campus in Dharwad, India. There are 750 

photos impacted by fungal diseases, 250 images affected by bacterial diseases, and 200 

images affected by viral diseases in the retrieved dataset. However, the field picture 

dataset initially collected with 1200 labeled photos has been expanded to 12,000 labeled 

images by using several image enhancement methods. To our knowledge, however, the 

publicly available picture data set for rice fields is restricted, and no RIFIS detection is 

available. To address this issue, we suggest creating a dataset of rice field sidewalk 

images named RIFIS. 
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Table 3.5. Summary of previous research datasets on rice fields. 

 

The salient contributions of this dataset were (1) it was the first novel dataset 

for the detection of the RIFIS in a two-wheeled hand tractor; (2) the diversity of features 

related to the foreground and background objects, state of the fields, level of illumination, 

luster, glare, standing water, cloud cover, and hand tractor movement. The proposed 

dataset presented RIFIS images collected using a tractor movement scenario with a spiral 

pattern in two locations in Bali, Indonesia. Based on researcher knowledge, no other 

RIFIS image dataset is currently available. In addition to datasets in the form of videos 

and images, the researcher also collected the location data (GPS) and orientation 

Title 
Targeted 

Domain 

Annotation 

Type 
Number of Data Place 

Paddy Rice Imagery 

Dataset for Panicle 

Segmentation 

(2021)[121] 

Panicle 

detection and 

segmentation 

tasks 

Polygon 400 images 

Hokkaido 

University, Sapporo, 

Japan 

A UAV Open Dataset 

of Rice Paddies for 

Deep Learning Practice 

(2021)[123] 

Rice seedling 

detection 

Bounding 

boxes 

Rice seedling—

28,047 images, 

Arable land—

26,581 images 

Wufeng District, 

Taichung, Taiwan 

Rice Ear Counting 

Based on Image 

Segmentation and 

Establishment of a 

Dataset (2021)[122] 

Rice ear 

detection 
Polygon 

3300 images 

(originally 1100 

images before 

augmentation) 

Sichuan Agricultural 

University, Ya’an 

City, Sichuan 

Province, China 

Classification of Rice 

Diseases using 

Convolutional Neural 

Network Models 

(2022)[124] 

Rice disease 

detection 

Bounding 

boxes 

12,000 images 

(originally 1200 

images before 

augmentation) 

University of 

Agricultural 

Sciences (UAS), 

Dharwad, India 

Real-time Disease 

Detection in Rice 

Fields in the 

Vietnamese Mekong 

Delta (2020)[125] 

Rice disease 

detection 

Bounding 

boxes 
116 images 

Vietnamese Mekong 

Delta 

Using Deep Learning 

Techniques to Detect 

Rice Diseases from 

Images of Rice Fields 

(2020)[126] 

Rice disease 

detection 
Polygon 6300 images Thailand 

Proposed Rice Field 

Sidewalk (RIFIS) 

(2022) 

Rice field 

sidewalk 

Bounding 

boxes and 

Polygon 

3723 images and 

18 videos 

Denpasar, Bali, 

Indonesia 
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(accelerometer, gyroscope, and compass) of tractors during the ploughing process using 

the internet of things (IoT) technology.  
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CHAPTER 4 

RESEARCH RESULTS 

 

4.1 Mechanical Design and Development 

Several modifications were made to the Quick Walk-Behind Hand Tractor 

manufacturer with the G3000 and G1000 types. Changes were made to five parts of the 

tractor, i.e., the Head of Handle Bar, Steering Linkage, Tension Handle, Throttle Lever, 

and Main Pipe. Figure 4.1 illustrates the position of the four parts, while the fifth part, the 

Throttle Lever, can be seen in Figure 4.7. 

 
Figure 4.1. Parts of Handle Bar as the Control of the Quick G3000 Tractor. 

4.1.1 Walk-Behind Hand Tractor 

The two-wheel walk-behind hand tractor is a farm machine that can be used for 

tillage and other agricultural work with a draft device installed on the back of the machine. 

Compared to bull power, this machine has high efficiency(Dewangan & Tewari, 2009). 

It is a multipurpose machine since it can also function as a driver for water pumps, 

processing equipment, or trailers. The tractor must be equipped with tillage equipment, 

such as a chop, harrow, or rotary plough as a ploughing machine. In Indonesia, hand 

tractors with V-shaped frames, such as Quick G3000 & G1000, are the most widely used 

machines in the process of ploughing rice fields (Shiotsu et al., 2015) (Lakitan et al., 

2019) (Paman et al., 2010). 
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4.1.2 Tractor Movement 

The G3000 and G1000 tractors have a similar movement control mechanism. 

Both use two wheels to manoeuvre over paddy fields. Each wheel is driven by pulling 

two Clutch Handles independently or simultaneously. The steering linkage, shifting rod, 

and shift lever are moved when the Clutch Handle is retracted. The tractor turns left when 

the left Clutch Handle is pulled and vice versa when the right Clutch Handle is pulled. If 

the operator does not pull both, the tractor continues straight; nevertheless, the tractor 

comes to a complete stop if both are pulled. The tractor's direction of movement is 

depicted in Figure 4.2. 

 
Figure 4.2. Clutch Handle Concept. 

4.1.3 Handle Bar Head & Steering Linkage 

In the handlebar head tractor G3000, four servo motors and two pulleys were 

added. This device is divided into two parts and arranged on the right and left parallel. As 

shown in Figure 4.3, each piece consists of two servo motors and one pulley. The servo 

motor and pulley are connected to the steering linkage using a stainless-steel wire rope, 

as shown in Figure 4.4. With this design, the tractor can be controlled to the right and left 

using the movement of the servo motors.  

After analyzing the field testing of the prototype design, the costs incurred for 

purchasing four servos were found to be relatively high for the farmers. Hence, an 

improvement was made to the mechanical design of the G1000 tractor by using only one 

servo motor on each right or left side and removing the use of pulleys. As shown in Figure 

4.5, the servo motor is directly connected to the clutch handle end. 
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Figure 4.3 Modification of Tractor’s Handle Bar.  

 

 
 

Figure 4.4. First Modification of 

Stainless-Steel Wire Connection. 

Figure 4.5. Second Modification of 

Stainless-Steel Wire Connection. 

4.1.4 Tension Handle 

The tension handle is used to manage the tightness of the V-Belt on the tractor. 

The tighter the V-Belt, the more speed and thrust increase. This part can be moved by 

pulling back or pushing forward, as shown in Figure 4.6; therefore, a modification was 

made to the G3000 and G1000 tractors by adding a DC motor with the concept of a screw 

system for linear movement. 

 
Figure 4.6. Tractor’s V-Belt System. 
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4.1.5 Throttle Lever 

Aside from managing the tension handle, farmers can adjust the tractor's speed 

and thrust by shifting the throttle lever to the right and left. The modification was made 

by adding a DC motor to be controlled remotely. The screw system for the linear 

movement was used to make the rotation of the motor will be converted into a right and 

left shifting motion. Figure 4.7 shows the Throttle Lever feeding modifications on the 

G3000 tractor. 

Based on the field testing results, the prototype design required a long time to 

move the throttle lever. Based on this problem, a change was given and implemented to 

the G1000 tractor. The DC motor was installed without using a screw system for the linear 

movement concept in this design. Figure 4.8 presents the results of the revision design 

implementation. 

 

Figure 4.7. First Modification of Tractor 

Speed. 

 

Figure 4.8. Second Modification of 

Tractor Speed. 

4.1.6 Main Bar 

By default, the G 3000 and G 1000 tractors have a retainer in the front to prevent 

them from falling forward; the front of the tractor is heavier without a counterweight in 

the rear. Modifications to the main bar are made by utilizing rubber wheels that are not 

used when the tractor is in ploughing mode and are equipped with iron wheels (Figure 

4.9). With this modification, the tractor maintains a good balance and does not become 

stuck or sink into the mud when applied forward or reverse momentum. The tractor 

weight balancing hanger is installed on the main pipe near the clutch handle to ensure that 

the tractor balances independently of the operator. This hanger has a maximum capacity 

of two rubber wheels. 
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Figure 4.9. Modification for Tractor Balance. 

4.2 Electrical Driver Unit Design 

The electrical driver unit is a part that acts to manage the movement of the 

tractor based on the input received from the mobile application. This unit consists of an 

Arduino Uno microcontroller as the primary control device for several actuators. Several 

servo motors with a torque of 25 kg-cm were used to control the tractor movement to the 

left or right. For the G3000 tractor, four servos were used, while the G1000 tractor only 

used two. DC motor was used to control the tension handle and throttle lever with a 

voltage of 12 V and a torque of 10 kg-cm. A motor driver with type H-Bridge BTS7960 

was used for these two DC motors. The HC-05 Bluetooth module communicated between 

the driver unit and the mobile application.  

The power source is a 12V battery with a capacity of 7Ah. Some electronic 

modules require lower voltages, and in this design, two step-downs were used to lower 

the voltage from 12V to 5V and 6V. Figure 4.10 illustrates the wiring diagram of the 

driver unit. After completing the field test, the researcher simplified the electronic 

component circuit into a single microcontroller board. As preliminary research, a GPS 

sensor (Ublox 6M) and a Compass (HMC5883L) were installed to obtain tractor location 

and orientation data using TTGO-TCall ESP32 SIM800L Internet of Things (IoT) 

technology, details of the circuit can be seen in Figure 4.11. The researcher compared the 

filters to reduce sensor reading noise, namely the Kalman Filter and the Butterworth Low 

Pass Filter (LPF). 
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Figure 4.10. Wiring Diagram Driver Unit. 

 

Figure 4.11. Wiring Diagram GPS 

and Compass Logger 

4.3 Software Development 

4.3.1 Arduino Software 

Software embedded in the Arduino functioned as the slave to receive the 

message sent by the Android software through Bluetooth communication. The message 

received was then identified to obtain a set of sequence commands to do the updated value 

towards several actuators such as DC or servo motors. After the message was identified, 

the command was issued to write the message's value to each actuator and drive the 

tractor. Figure 4.12 depicts the flow diagram between Arduino and Android.  

4.3.2 Android Software  

Android Software acts as the master message sender to Arduino. This software 

shows the list of Bluetooth available surroundings and then connects them. Once 

connected, the users can select the available commands, as shown in Figure 4.13. The set 

commands are then sent in a message through Bluetooth communication. 

 

TTGO T-Call V1.3 ESP32 

HMC 

5883L 
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Figure 4.12. Arduini and Arduino 

Application. 

 
Figure 4.13. GUI of Android 

Application 

4.3.3 Filter Comparison for GPS and Compass Data 

As preliminary research on an autonomous tractor, sensor readings and filter 

comparison are needed to record the tractor's behaviour. GPS and Compass are usually 

used for a vehicle to perform trajectory tracking. From these two sensors, several data are 

obtained regarding the position and orientation of the tractor. Still, the data obtained by 

the Ublox 6M and HMC5883L have noise and are very unstable. A filtering technique is 

applied to overcome this problem. Kalman Filter and Butterworth LPF are used to see the 

optimal filter results to reduce the noise of the two sensors.  

Nomenclature for Kalman Filter 

xk  the state vector xk+1 the process (system) model 

φk the state transition matrix, 

which connects the next time 

step's state vector to the current 

state 

�̂�= �̂�k 

 

the post estimation of xk using the 

linear process model 

wk process noise U= yk The Measurement (Sensor) Model 

vk the measurement noise 𝑄𝑘𝑎𝑙𝑚𝑎𝑛 the covariance matrix of wk 

Pk the error covariance between xk, 

�̂�k 

𝑅𝑘𝑎𝑙𝑚𝑎𝑛 the covariance matrix of vk 

Hk the matrix that connects the 

measurement vector and the 

state vector 

Kk Kalman Gain 

 

In using the Kalman Filter, the process (system) can be modelled in equation 

(1) with the measurement (sensor) model in equation (2). The noises in the predictions 

and measurement procedures were determined by measuring the shift and comparing it 

to predicted and measured data using the minimal error approach. See equation (3) for 

the covariance matrix of wk and vk (Q and R, respectively) derived from the inaccuracy in 
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predicted and measured changes compared to manually measured changes (Q. Li et al., 

2016). Using the linear Kalman model, 𝑃𝑘 equation (6) (Q. Li et al., 2016) represents the 

error covariance between xk, �̂�k equation (4), and (5) (Q. Li et al., 2016). Equation (7) 

gives the value of the Kalman gain (𝐾𝑘) that minimizes the sum squared error (Q. Li et 

al., 2016), 𝐻𝑘 and k is constant. Algorithm 1 is the application of the Kalman filter. 

xk+1 = φkxk + wk …..…………………..………………... (1) 

U= yk = Hk xk + vk …..…………………..………………... (2) 

Cov(wk) = 𝑄𝑘𝑎𝑙𝑚𝑎𝑛, Cov(vk) = 𝑅𝑘𝑎𝑙𝑚𝑎𝑛 …..…………………..………………... (3) 

xk = �̂�k= �̂� …..…………………..………………... (4) 

�̂� = �̂� + 𝐾𝑘[𝑈 − 𝐻 ⋅ �̂�] …..…………………..………………... (5) 

𝑃𝑘 = (1- 𝐾𝑘 ⋅  𝐻𝑘) 𝑃𝑘+𝑄𝑘𝑎𝑙𝑚𝑎𝑛 …..…………………..………………... (6) 

𝐾𝑘 =  𝑃𝑘 ⋅  𝐻𝑘 (𝐻𝑘 ⋅  𝑃𝑘 ⋅  𝐻𝑘 +  𝑅𝑘𝑎𝑙𝑚𝑎𝑛)−1 …..…………………..………………... (7)  

 

Algorithm 1: Kalman Filter. 

Data: φ=1.00, H=1.00, 𝑅𝑘𝑎𝑙𝑚𝑎𝑛=Cov(vk)=0.33, 𝑄𝑘𝑎𝑙𝑚𝑎𝑛=Cov(wk)=15, P0=0, K0=0 

Result: �̂� 

1. while true do 

2.         ➔ Obtain noisy U1(at each time step) 

3.         ➔ GOTO KALMAN, obtain filtered U1 (at each time step) 

4. end while 

5.  function KALMAN(U) 

6.         ➔𝐾𝑘 =  
𝑃𝑘⋅ 𝐻𝑘

𝐻𝑘⋅ 𝑃𝑘⋅ 𝐻𝑘+ 𝑅𝑘𝑎𝑙𝑚𝑎𝑛
 (update Kalman Gain) 

7.         ➔�̂� = �̂� + 𝐾𝑘[𝑈 − 𝐻 ⋅ �̂�] 
8.         ➔𝑃𝑘 = (1- 𝐾𝑘 ⋅  𝐻𝑘) 𝑃𝑘+𝑄𝑘𝑎𝑙𝑚𝑎𝑛 

9.         ➔ 

10. return �̂�; 

 

Nomenclature for Butterworth Filter 

𝐻(𝑠) Butterworth transfer function 𝜁 the damping ratio of the system 

𝛺𝑐 natural frequency 𝑠 the plane 

K gain in passband 𝑓 input frequency 

𝑓ℎ cutoff frequency   

 

The Butterworth low pass filter, an anti-aliasing filter, provides maximum 

passband evenness. The higher the filter order, the longer the bandpass evenness. The 

general form of the transfer function model of a second-order Butterworth low pass filter 

can be described by equation (8) (Ingle & Proakis, 2012). The polar form of the low pass 
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filter is given by equation (9) [38]. The application of this filter can be seen in Algorithm 

2. 

 

𝐻(𝑠) =  
𝐾

𝑠2 + 2𝜁𝛺𝑐𝑠 + 𝛺𝑐
2
 …..…………………..………………... (8) 

|
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
| =

𝐾

√1 + (
𝑓
𝑓ℎ

)
4

 

…..…………………..………………... (9) 

 

 
 

Algorithm 2: Butterworth Low Pass Filter. 

Data: nzeros= 2, npoles= 2, gain=8.524410156e+00, xv[nzeros+1], yv[npoles+1], 

next_input_value, next_output_value 

Result: next_input_value 

1. while true do 

2.         ➔ Obtain noisy next_input_value (at each time step) 

3.         ➔ GOTO ButterworthLPF, obtain filtered next_input_value (at each time 

step) 

4. end while 

5. function ButterworthLPF(next_input_value) 

6.         ➔xv[0] = xv[1]; xv[1] = xv[2];  

7.         ➔xv[2] = next_input_value / gain; 

8.         ➔yv[0] = yv[1]; yv[1] = yv[2];  

9.         ➔yv[2] =   (xv[0] + xv[2]) + 2 * xv[1] + ( -0.2947082939 * yv[0]) + (  

0.8254676161 * yv[1]); 

10. return(next_output_value = yv[2]);   

4.3.4 Simulation Design of Walk-Behind Tractor 

Nomenclature for Tractor's Kinematics Model and Simulation 

ξ  the robot's pose in the 

local frame 
𝜔𝑅 right wheel angular velocity (rad/s) 

�̇� x position 𝜔𝐿 left wheel angular velocity (rad/s) 

�̇� y position 𝑣 linear velocity (m/s) 

�̇� the angle of tractor 

orientation 
𝜔 angular velocity (rad/s) 

𝑅 the radius of the wheel 𝐿 distance between the left and right 

wheels  

 

This research carried out the kinematic mathematical modelling of the walk-

behind hand tractor with the two-wheel differential drive. This kinematic model is used 
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for simulation using the pure pursuit and supervisory logic control algorithm with the 

waypoint concept in the Matlab/Simulink application.  

 

Figure 4.14. Differential Drive Kinematic Model 

The kinematic model is based on the tractor types G 3000 and G 1000. Both 

have two independently driven wheels that can control velocity and angularity and are 

also known as differential-drive vehicles. A mathematical model of the tractor itself is 

needed to study and simulate the behaviour (operation of the walk-behind hand tractor); 

it is essential to do this before field testing is carried out. When modelling a tractor, the 

following two assumptions are made. The first assumption is that the tractor is moving at 

a constant speed. Second, the tractor wheels do not slip, and the surface for robot 

movement is flat. Figure 4.14 is a general description of the tractor model, which is used 

as the basis for the kinematics model of equations (10)-(13) with a differential drive 

type(Siegwart et al., 2011). A walk-behind hand tractor kinematics model can be written 

from this equation, a function of the left and right wheel angular velocity in a matrix (14). 

Equations (15) and (16) are forward kinematics calculations to relate the forward speed 

and angle of the tractor to the differential drive(Siegwart et al., 2011). At the same time, 

equations (17) and (18) are inverse kinematics to get the value of the angular velocity of 

the right and left wheels(Siegwart et al., 2011). Both Forward Kinematics and Inverse 
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Kinematics equations convert between body speed and wheel speed in visualizing tractor 

movement in Simulink.  

ξ = [
�̇�
�̇�

�̇�

] …..…………………..………………... (10) 

�̇� = 𝑣 cos 𝜃 ………………..…..…………………... (11) 

�̇� = 𝑣 sin 𝜃 ………………………………………... (12) 

�̇� =  𝜔 …..…………………..………………... (13) 

[
�̇�
�̇�

�̇�

] =
1

2
[

𝑅 ⋅ cos 𝜃  
𝑅 ⋅ sin 𝜃  

𝑅

𝐿
  

𝑅 ⋅ cos 𝜃  
𝑅 ⋅ sin 𝜃  

−
𝑅

𝐿
  

]  [
𝜔𝑅

𝜔𝐿
] …..…………………..………………... (14) 

𝑣 =
𝑅

2
(𝜔𝑅 + 𝜔𝐿) …..…………………..………………... (15) 
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4.4 TROLLS: Tractor Controlling System 

This study proposes a novel controlling platform system (mechanical, electrical, 

and software) for walk-behind hand tractors with a low budget. The operator controls it 

via an android application using the Bluetooth connection. The prototype design was built 

and implemented on the G3000 tractor and tested on the farmland (Figure 4.23). Several 

revisions were made to obtain the final product's design from the field trial, later 

implemented and tested on the G1000 tractor. This final product was tested on the 

farmland, as shown in Figure 4.24. Modifications were made to the standard tractor by 

adding a novel mechanical and electrical driver unit design to be controlled remotely. In 

the first experiment (prototype design on the tractor G1000), the researcher used a 

stainless-steel wire rope and used four servo motors and two pulleys connected to the 

steering linkage (Figure 4.15). However, an evaluation of this design resulted in a 

reasonably high cost and inefficient use of power, so in the second experiment (the final 

product design on the G3000 tractor), only two servo motors were used, which were 

directly connected to the end of the clutch handle (Figure 4.16). Novel mechanical design 

modifications were applied to the tension handle (Figure 4.17) and throttle lever using a 
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screw system for linear movement. This movement system functions optimally on the 

tension handle in the first and second trials. However, the throttle lever mechanical design 

was not optimal in the first experiment (Figure 4.18), so it was replaced with a DC motor 

with an encoder (Figure 4.19). Another novel mechanical design is applied to the main 

bar by providing a tractor-weight balance hanger, shown in Figure 4.20. This weight 

balance hanger design works optimally in the first and second experiments. 

 
 

Figure 4.15. Modification on G3000 

 

Figure 4.16. G1000 Modification 

 

  
Figure 4.17. V-Belt Handle Bar 

Modification 

 

 

Figure 4.18. G1000 Speed Modification 

 

 
 

Figure 4.19. G3000 Speed 

Modification 

Figure 4.20. Balancer for Tractor 

 

 

Along with the mechanical design, the electrical driver unit functions as a slave, 

accepting commands and driving the actuator. The initial experiment included standalone 

or modular electronic components (Figure 20a). This driver unit design requires less cost-

efficient; therefore, a single-board microcontroller board combines the functions of 

several modules into one (Figure 4.21). Android software is made as a master to send 
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commands to the driver unit. The software design was made portrait on the first try, but 

the operator deemed this design less than optimal (Figure 4.22). So based on these 

shortcomings, the software design was changed to landscape (Figure 4.13). The Bluetooth 

communication protocol is cost-effective and can span numerous agricultural fields in 

Indonesia, particularly the Bali region. This application has been accessible on the Google 

Play Store under TROLLS - Tractor Controlling System (STIKOM Bali developer). A 

cost and battery runtime comparison between the prototype and the final product was 

performed to validate this platform. 

  
Figure 4.21. Prototype Version. Figure 4.22. Final Product Version. 

 

As shown in Table 4.1, the test results measured the cost-efficiency of the walk-

behind hand tractor controlling system. A 21.74% cost efficiency is obtained by 

comparing the total cost of making the final product and the prototype. This cost 

efficiency showed that shifting the connection of stainless-steel wire rope from the 

steering linkage to the clutch handle could reduce the number of stepper motors. Also, 

combining several components into a single board microcontroller could save the cost 

spent compared to buying several components separately. This product is more affordable 

for Indonesian farmers in terms of cost when compared to previous studies (Guo et al., 

2018; H. Wang & Noguchi, 2019b), with a lower level of precision. During the test, the 

accumulator battery with a voltage of 12V and a capacity of 7 Ah was used. In the 

prototype design, two batteries were arranged in parallel to fulfil the Current's need, and 

the final product also used two batteries. Based on the farmland field testing, the battery 

runtime's endurance could achieve more or less 12 hours. Battery utilization efficiency is 

84.62 percent, as determined by the difference between the consumption of the final 

product and prototype batteries. Table 4.2 shows the final result of battery usage.  
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Figure 4.23. First Field Trial 

 
Figure 4.24. Second Field Trial 

 

Table 4. 1. The Tractor Controlling System Production Cost (Prototype & Final Product). 

Component 
Prototype  

(Qty) 

Final 

Product 

(Qty) 

Price 
Prototype  

($) 

Final 

Product 

($) 

Servo Motor 4 2 14.5 58 29 

DC Motor 2 2 20.6 41.2 41.2 

Accumulator Battery 2 2 15 30 30 

Arduino Uno 1 n/a 6 6 n/a 

BTS7960 DC Driver 2 n/a 4.13 8.26 n/a 

Bluetooth HC-05 1 1 3.44 3.44 3.44 

Step-down 2 n/a 2.48 4.96 n/a 

Single Board Microcontroller n/a 1 7.6 n/a 7.6 

Approximated Turning Machine Cost 1 1 35 35 35 

Total Cost 186.86 146.24 

 

Table 4. 2. Accumulator Battery Runtime Comparison (Prototype & Final Design). 

Component 
Prototype  

(Qty) 

Final 

Product 

(Qty) 

Current 

Each 

Component 

(A) 

Prototype 

(A) 

Final 

Product 

(A) 

Servo Motor 4 2 1.9 7.6 3.8 

DC Motor 2 2 1.4 2.8 2.8 

Total Current (A) 10.4 6.6 

Approximated Battery Run Time (Real-time Field Testing) 

(Hours) 6.5 12 

 

The researcher also tracks the tractor's location and orientation, measuring cost 

efficiency and battery runtime. Data from GPS and Compass sensors (HMC5883L) were 

collected during the field test. The Kalman and Butterworth Low Pass Filter were then 

applied with visualizations, as shown in Figures 4.25 and 4.26. The two images show that 

the data generated from GPS and Compass is volatile; therefore, the filter can produce 
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stable data(X. Han et al., 2017; T. Wu & Hung, 2017). However, from these two images, 

the comparison results between the Kalman and Butterworth Low Pass Filters cannot be 

seen, so a root-mean-square error (RMSE) test is carried out on position and orientation 

predictions with different durations using equation (19)(Liu & Guo, 2021), where 

𝑀𝑛(𝑋𝑛) is the actual measurement based on 𝑋𝑛, 𝑀𝑛
𝑝(𝑥𝑛) is the prediction time, and N is 

the number of prediction times. From this test (Table 4.3), it can be concluded that the 

second-order Butterworth Low Pass Filter gets better results when compared to the 

Kalman Filter.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑀𝑛

𝑝(𝑥𝑛) − 𝑀𝑛(𝑋𝑛))
2

𝑁

𝑛=1

 …..…………………..………………... (19) 

  
Figure 4.25. GPS Data Visualization Figure 4.26. HMC5883L Data Visualization 

Table 4.3. RMSE Comparison. 

RMSE GPS (m) 

RMSE HMC5883L 

(degree) 

Butterworth 

LPF Kalman Filter 

Butterworth 

LPF 

Kalman 

Filter 

0,0263888 0,1823068 0,8174105 1,0232198 

 

Overall, the development process to create a two-wheeled hand tractor remote 

control system has been completed, but the automation process must be carried out. 

Therefore, a preliminary study was conducted using Simulink on kinematic model 

Latitude 

Longitude 

Time (second) 

Degree 
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mapping and tractor movement simulation. Equations (1)-(9) were then implemented into 

Simulink with two controller types. Figure 4.27 is a block diagram of the Pure Pursuit 

Control, while Figure 4.28 is a Supervisory Logic Control with details in Figure 4.29. The 

parameters and values used in this simulation can be seen in Table 4.4. The waypoint 

concept is the basis of this simulation, where the input location is (x, y) in the form of a 

10x2 array and forms a back-and-forth path. Details of each Simulink block can be seen 

in Figures 4.30 -4.33. 

Table 4.4. Simulation Parameters. 

Parameters Value 

Desired Linear 

Velocity (𝑣) 0.5 m/s 

Maximum Angular 

Velocity (𝜔) 0.785 rad/s 

Lookahead distance 0.35 m 

L 1.6 m 

R 0.4 m 

Waypoints [x1, y1; … ; 

xn, yn] 

[0,0; 0,5; 1,5; 1,1; 2,1; 2,5; 

3,5; 3,1; 4,1; 4,5] 

 

 
Figure 4.27. PPC Block Diagram 

 

 
Figure 4.28. Supervisory Logic Control Block Diagram 
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Figure 4.29. Detail of Waypoint System Simulation 

 

 
Figure 4.30. Differential Drive Block 

Detail 

 
Figure 4.31. Differential Drive Block 

Detail 

 
Figure 4.32. Differential Drive Block 

Detail 

 
Figure 4.33. Differential Drive Block 

Detail 

 

Figure 4.34 illustrates the simulation of tractor movement using Supervisory 

Logic Control, while Figure 4.35 simulates tractor movement using Pure Pursuit Control. 

Meanwhile, Figures 4.36 and 4.37 depict each controller's right and left wheel speeds. 

From the simulation results, it can be concluded that Supervisory Logic Control has a 

higher level of accuracy, reaching 10 out of 10 coordinates (100%), while Pure Pursuit 

Control has 6 out of 10 coordinates (60%).  
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Figure 4.34. First Simulation Results 

 

 
Figure 4.35. Second Simulation Results 

 

  

 
Figure 4.36. Wheels Speed Data for 

Supervisory Logic Control Simulation 

 
Figure 4.37. Wheels Speed Data for Pure 

Pursuit Control Simulation 

 

4.5 Path Planning 

This main research aims to compute the coverage path equation (22) to obtain 

an edge-vertex path with a Boustrophedon Cellular Decomposition pattern and test it on 

the QUICK G-1000 walk-behind tractor. The goal is to determine the edge-vertex routes 

within the polygon, the start-finish points, and the distance between tillage lines. 

τ = {ps, p0 . . . pn, pf} (22) 

Angular Velocity (rad/s) 

Time (s) 

x-axis 

y-axis 

x-axis 

y-axis 

Angular Velocity (rad/s) 

Time (s) 
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Figure 4.38. EVP Representation. 

 

Figure 4.38 shows a path that forms an alternate direction when the tillage line 

generated is parallel to one side of the ROI. An Edge-Vertex Path (EVP) is formed inside 

polygon Q. EVP is formed by the intersection of waypoints and the Ltillage line with 

polygon Q. In algorithm 1, the inputs are the polygon Q, the initial vertex b, the antipodal 

vertex c and d, and the distance between the tillage line dx. dx is the first user input 

determined by the size of the Puddler rather than the type. At the beginning process, the 

Ltillage line is parallel to the sides (a, b) that have been displaced perpendicularly toward 

the c and d directions. After intersecting with polygon Q, Ltillage subtracts or adds dx to 

create p1 and p2. The next step is to combine the points into the path and connect them 

to the CalculateConnect function, which provides a perpendicular boundary between the 

two points. If the footprint intersects the polygon line, this method will be repeated and 

shifted to points c or d. This algorithm returns the path ρ = {p0, . . . , pn}, at the final step. 

EVP always begins from vertex a and sweeps towards vertex b, c, and d. 

 

Algorithm 1: Polygon ROI edge-vertex identification (GetPath(a, b, c, d)). 
Calculating the BFP path begins with (ρ = {p0, . . . , pn}) for the polygon (Q 
= V, E). The Tractor begins its movement at vertex a and sweeps in the 
direction of c and d. 

Data: Q, dx, a, b, c, d 
Result: ρ 

1. Ltillage CreateLine(a, b); 
2. Ltillage OffSet(Ltillage, dx); 
3. ρ ∅; 
4.  while Intersects(C(Ltillage); Q) do 
5.     if (IntersectEdgesLeft) then 
6.       ip1; ip2 IntersectEdges(Ltillage; E) + dx; 
7.     else if (IntersectEdgesRight) then 
8.       ip1; ip2 IntersectEdges(Ltillage; E) - dx; 
9.     end if 
10.    ρ  CalculateConnect(ρ; ip1; ip2); 
11.    Ltillage  OffSet(Ltillage, dx); 
12.  end while 
13. return ρ; 
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The result of implementing Algorithm 1 is a Laravel-based website platform 

that uses Google Maps for satellite map sources. The user can add a region of interest to 

the accessible map and specify the Interval Distance in meters and the starting and ending 

points. After determining the initial inputs, the final step is to click the Generate Paths 

button to generate the path automatically. A scenario with varying intervals from the same 

ROI, start point, and finish point is given to validate this platform. This platform is 

evaluated using 1, 1.5, 2, and 2.5 meters interval distance values. Figure 4.39 shows that 

the platform successfully auto-generating coordinates in four different scenarios. 

Furthermore, the coordinates generated by the path planning platform were validated by 

field tests to support the autonomous walk behind the Quick G1000 tractor. 

 

 
Figure 4.39. Path Planning Platform 

 

As a validation scenario, an Embedded System Platform was installed on the 

Tractor. Figure 4.40 shows the Embedded System Platform box, which contains a 

controller and several motors that control the clutch handle and propel the tractor wheels 

autonomously via the waypoint method (coordinates from Path Planning Platform) at a 

constant and predetermined speed. In the controller, several algorithms are implanted to 

pf 

ps 

pf 

ps 

pf 

ps 

pf 

ps 
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read heading distance, error, and angle so that the Tractor can move autonomously, 

including Algorithms 2, 3, and 4. 

 
Figure 4.40. Quick G1000 Tractor Box Controller Installation 

 

 

 

Algorithm 2 is the compass sensor reading. The reading results are normalized 

to vector form and then used as input for the heading computation (atan2(normalize 

YAxis, normalize XAxis)). To compensate for the compass's divergence from the Earth's 

actual north pole, the declination angle (δ), which may be found at https://www.magnetic-

declination.com/(Magnetic-Declination.com, 2022), must be calculated. The declination 

angle for Gianyar, Bali- Indonesia, is 0° 43' EAST (POSITIVE). There are two conditions 

Algorithm2: Compass Reading 

Data: normalize, normalize_YAxis, normalize_XAxis, heading, declinationAngle, 
headingDegrees 
Result: headingDegrees 

1. normalize  ReadCompassNormalize(); 
2. heading = atan2(normalize_YAxis, normalize_XAxis); 
3. declinationAngle = (∠ +(min/ 60))/ (180/ π); 
4. heading -= declinationAngle; 
5.    if (heading less than 0) then 
6.      heading += 2 * π; 
7.    else if (heading more than 2 * π) then 
8.      heading -= 2 * π;  
9.    end if 
10. headingDegrees  ConvertToDegrees(heading); 
11. return headingDegrees; 
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in which the heading calculation results should be corrected: larger than 2 * π and fewer 

than 0 degrees. After that, the result is translated into degrees.  

 

Algorithm 3 is a distance computation between the robot's current location and 

the target waypoint. The GPS sensor value represents the current location's degree of 

longitude and latitude, and the target waypoint must be translated to radians. Following 

that, the Haversine formula is used to calculate the great-circle distance. 

 

Algorithm 4 is a heading error computation when the target heading value 

differs from the current heading value. The heading error calculation findings will be 

utilized as input for the robot's movement, allowing it to operate autonomously. The 

direction of the Tractor's heading is depicted in Figure 4.41. Two restrictions limit the 

results of the Tractor heading angle calculation. 

Algorithm 3: Calculate Distance to Target: distance from the current location to the 
target waypoint  

Data: deltaLongitude, currentLong, currentLat, targetLong, targetLat 
Result: distanceToTarget 

1. Longitude  radians (currentLong - targetLong); 
2. lat1  radians(currentLat); 
3. lat2  radians(targetLat); 

4. Longitude = sq ((cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * 

cos(Longitude))); 

5. Longitude += sq(cos(lat2) * cos(Longitude)); 

6. Longitude = sqrt(deltaLongitude); 
7. denom = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * 

cos(Longitude)); 

8. Longitude = atan2(Longitude, denom); 

9. distanceToTarget = Longitude * 6372795; 
10. return distanceToTarget; 

 

Algorithm 4: Calculate robot turning to get to the waypoint target 

Data: headingError, targetHeading, currentHeading, errorOutput, headingTolerance, 
motorMovement 
Result: motorMovement 

1. headingError = targetHeading - currentHeading;   
2.    if (headingError less than -180) then 
3.          headingError += 360; 
4.       else if (headingError more than 180) then 
5.          headingError -= 360; 
6.    end if 
7. errorOutput  calcErrorOutput(headingError) 
8. motorMovement  calcMotorMovement(errorOutput) 
9. return motorMovement; 
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Figure 4.41. Error handling for Tractor Heading Angle 

Field tests were conducted and compared to simulation results to validate the 

Path Planning and Embedded System Platform. In this test, one scenario with the 

following characteristics was created: 

1. Figure 4.42 depicts a waypoint's coordinates with ROI, start-finish points, and four 

meters of interval distance. The value of four meters is utilized since the accuracy of 

the employed GPS is insufficient to overcome interval values of less than four meters. 

2. Field test results are compared with the tractor model simulation using the MatLab 

robotic toolbox with a differential drive kinematic model to determine the estimated 

plowing time. 

3. The simulation parameters used to represent the G1000 Quick tractor are shown in 

Table 4.5. 

4. The ROI and the waypoint coordinates used in the simulation are the same as the size 

generated from the Path Planning Platform. 

 

 
 

Case 1: Target Heading- Current 

Heading > 180 

Case 2: Target Heading- Current 

Heading > -180 
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Figure 4.42. Scenario for Path Planning and Waypoint Testing 

 

Table 4.5. Parameters for Matlab Simulation 

 

Figure 4.43 shows the Simulink block diagram for the simulation. The waypoint 

block is an input containing an array of coordinates. The experimental scenario of the 

Waypoint block has an array measuring 8 x 2. Based on the simulation results depicted 

in Figure 4.44, it is evident that the Tractor follows the given coordinates of the path. This 

simulation shows that the estimated tractor movement time is 84 seconds. The simulation 

results are then compared with the tractor movement time in-field trials, as shown in Table 

3. 

 
Figure 4.43. Simulation Block Diagram 

 

Parameter Unit Value 

Linear Velocity m/s 0.56 

Wheel Radius rad/s π/4 

Distance between wheels m 1.8 
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Figure 4.44. Simulation Results. 

 

 
Figure 4.45. Tractor Movement for Field Trial. 

 

Field trials were carried out in one of the rice fields in the Ketewel area, Gianyar 

Regency, Bali-Indonesia. The researcher used the same region of interest, starting point, 

finish point, and four meters distance interval. Each point is recorded using an IoT 

(Internet of Things) based logger module installed on the Tractor. The data is stored in 

the database and processed using a text editor into .gpx format, then visualized using the 

Google Earth application in Figure 4.45. The white line and red dots represent the robot’s 

target path and waypoints, while the yellow dots represent the tractor path and the 

recording results of the logger module. This experiment demonstrates how a robot can 
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calculate tractor orientation and pass waypoints. As seen in Figure 4.45, the highest error 

distance between the target waypoint and the tractor position based on the GPS and 

Kalman Filter is 2.61 meters. The researcher also recorded the time data of plowing 

carried out in simulations and field tests with an area of interest of 302.65 m2, and the 

results are shown in Table 4.6. The time required to generate the path planning 

coordinates is 685 milliseconds, while the time between simulation and trial is different. 

There is a difference of a few seconds where the simulation conditions are faster than the 

actual field trial. 

Table 4.6. Comparison of plowing process time between simulation results and field trials 

 

4.6 RIFIS: Rice Field Sidewalk Detection Using Machine Learning 

4.6.1 Rice Field Sidewalk Dataset 

A new dataset, RIFIS, is suggested as an alternative to earlier datasets 

(Kiratiratanapruk et al., 2020; Nguyen et al., 2021; Shao et al., 2021; H. Wang et al., 

2021; Yakkundimath et al., 2022; Yang et al., 2021) that concentrated more on rice plant 

diseases. The RIFIS dataset presented in this work consisted of 16 videos with a size of 

48.7 GB and 970 high-definition RGB images (1920 × 1080 pixels) and their annotations. 

Since the acquired raw material was a 1920 × 1080 pixel high-definition video, it was 

possible to extract several image sequences from a single video. By using this method, 

24 images were recovered from each second of the raw video. The extracted images were 

named by concatenating the raw video source name and a postfix value that specified the 

order in which the images were extracted in the order in which they were made. For 

example, a raw video named “GH010327.MP4” (Figure 4.46a) was extracted into several 

image sequences starting at “GH010327_0100000.PNG”. After that, several images were 

selected to be annotated and were given a name starting from “Sequence 0100000.JPG” 

(Figure 4.46b). 

Polygonal ROI Processing time Simulation tillage time 

Tillage 

time 

Experiment 1  685 milliseconds  84 second 132 second 
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Figure 4.46.  Dataset Collection 

 

Recognizing the surrounding environment was one of the requirements so that 

the tractor could recognize the inside and outside areas of the rice field. The easiest way 

to divide these two conditions was to detect the RIFIS. Based on the collected video 

dataset, observations were made on the environmental conditions of the rice fields to 

obtain several features that could be used. The dataset had 19 unique features. Combining 

day circumstances, weather and ambient factors, paddy fields, partial occlusion, 

foreground objects, and backdrops provided difficulties for the RIFIS detection 

algorithm. These 19 characteristics are categorized in Table 4.7. The data collection was 

only carried out in the afternoon due to limited available funds, so land leases, cameras, 

tractors, operators, etc., had limitations. 

Table 4.7. RIFIS dataset features. 

 

 
(a) 

 
(b) 

 

Day 

Condition 

Weather 

Condition 
Rice Field State 

Environmental 

Condition 
Occlusion Presence of Object 

1. Afternoon; 
2. Partially 

Cloudy; 

3. Partially 

Covered by Grass; 

4. Watery; 

5. Partially 

Ploughed; 

6. Mild to Strong 

Glare; 

7. Variation in 

Rice Field Surface 

Color; 

8. Not Smooth 

Color Transition 

Between Sidewalk 

and Rice Field 

Area; 

9. Partial Occlusion 

by Grass; 

10. Partial Occlusion 

by Humans; 

11. Partial Occlusion 

by Tractor Wheel; 

12. Partial Occlusion 

by Small Irrigation 

Channel; 

13. Grass; 

14. Irrigation 

Channel; 

15. Humans; 

16. Small Huts; 

17. Houses; 

18. Sky (Clouds); 

19. Trees. 
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As discussed previously, the RIFIS dataset contained images comprising 19 

features. In Figure 4.47, the researcher presented several examples of a RIFIS showing a 

combination of features, such as different levels of illumination (Figure 4.47a); strong 

glare and paddy field conditions (Figure 4.47b); and small irrigation channels (Figure 

4.47c), partial human occlusion (Figure 4.47d,e), cloudy afternoons and partially 

ploughed rice fields that make the sky reflected in puddles and detected as clouds (Figure 

4.47f); fog; foreground objects and city skylines (Figure 4.47g); huts; pools of water and 

glare (Figure 4.47h); and partial occlusion by grass (Figure 4.47i). 

 
Figure 4.47. Features Variation of RIFIS Dataset. 

 

The final collection of images was manually annotated using the website-based 

tool makesense.ai. Annotations had two purposes: first, to identify the RIFIS, and second, 

as a benchmark for evaluating the RIFIS detection algorithm’s performance. The 

researcher manually drew and labeled sidewalk area polygons for each image. The 

annotation software outputted a JSON file from which the RIFIS polygon points and 

recommended ground truth (GT) values were extracted and calculated. Figure 4.48 

depicts the manual annotation procedure using the software makesense.ai 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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Figure 4.48. Images Annotation. 

 

The ground truth (GT) value identifies the real position of the object of interest 

within an image. A GT schema depicted in Figure 4 was developed to obtain the rice field 

sidewalk GT values. There were three GT schemas, namely the RIFIS area, which formed 

triangular, square, and concave polygons. The GT schema presented in Figure 4.49a 

consisted of eight points forming the RIFIS polygon (sidewalk) area, namely P1 (x1,y1), 

P2 (x2,y2), P3 (x3,y3), P4 (x4,y4), P5 (x5,y5), P6 (x6,y6), P7 (x7,y7), and P8 (x8,y8). 

Meanwhile, Figure 4.49b only had six points, Figure 4.49c had four points, and Figure 

4.49d had three points. The sidewalk area separated the rice field and the outside area. 
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Figure 4.49. Ground truth labeling. 

 

Table 4.8 shows the structure of the RIFIS JSON file as the annotation results, 

containing two main parts (image and annotation arrays). In the JSON file’s annotations 

field, “id” represented a single image object, “iscrowd” indicated whether the 

segmentation pertained to a single object or a group/cluster of objects, and “category_id” 

corresponded to a unique category listed in the categories section. There were two distinct 

types of labeling: (1) annotation of polygonal segmentation and (2) annotation of the 

rectangular bounding box. Figure 4.50 represents examples of image labeling from the 

RIFIS dataset. As shown in Figure 4.50a, the polygonal segmentation annotation included 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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a float array segmentation list of vertices (x, y pixel positions). Figure 4.50b shows the x 

and y coordinates of the upper left and lower right corner arrays for the rectangular 

bounding box. “Area” represented the area of the bounding box in each image. Object 

detection was typically described as detecting a rectangular bounding box and a class 

label for each object of interest in an image. In instances of segmentation, a pixel-by-

pixel segmentation was created for each occurrence. The target object was the rice field 

sidewalk, which was unsuitable for object detection, segmentation, or depth perception 

tasks, all of which are required by other systems, such as autonomous or assistance 

systems. The proposed dataset included a variety of annotations for the sidewalk 

environment. To the best of the researcher's knowledge, this was the first large-scale 

sidewalk dataset that included annotations for instance-level objects (bounding box and 

polygon segmentation) and ground-truth depth. 

  
(a) (b) 

Figure 4.50. Dataset Labeling. 

 

Table 4.8. The structure of the RIFIS JSON file. 

 

Images [ ] Annotations [ ] 

id integer id integer 

width integer iscrowd Boolean 

height integer image_id integer 

file_name string category_id integer 

  segmentation float [ ] 

  bbox float [ ] 

  area float 
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4.6.2. Tractor Location and Orientation Dataset 

The data obtained through sensors mounted on the tractor were then stored in a 

database using internet of things technology with the MQTT protocol. The stored data 

had an index (‘id’) as the primary key, followed by data on the date that the data were 

recorded, in the format “YYY-MM-DD HH:MM:SS”. Tractor orientation data were 

obtained from ‘yaw’, ‘pitch’, and ‘roll’ values from the gyroscope sensor; ‘x’, ‘y’, ‘z’ 

values from the accelerometer sensor; and ‘a’ (azimuth) values from the compass sensor. 

The location data of the tractor were recorded using a GPS sensor where the coordinates 

(longitude and latitude) were the primary reference. The data recorded on the MQTT 

server were then exported into .sql form to be processed on the local server. The data 

were cleaned of noise from GPS reading errors, which were then exported into .xlsx to 

be more easily analyzed and used. After cleaning, there were a total of 3728 data. Figure 

4.51a shows the electrical component implementation of the data logger; meanwhile, 

Figure 4.51b shows the final packaging of the data logger; Researcher used an external 

antenna to enhance the ESP32 TTGO T-Call signal. The description for this hardware 

logger can be seen in Table 4.9. 

  
(a) (b) 

Figure 4.51. Data Logger for Location and Orientation. 
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Table 4.9. Data description captured by the logger device. 

 

4.6.3. Foldering Structure 

The hierarchical folder structure of the RIFIS dataset is shown below: 

o RIFIS 

• Images 

▪ dataset 

▪ annotations.json 

• LocationOrientation 

▪ Location-orientation.xlsx 

• Videos 

▪ FrontCamera 

▪ LeftCamera 

▪ RightCamera 

4.6.4. Dataset Acquisition Methods 

4.6.4.1. Location and Source of Collection 

Rice field sidewalks are the boundaries of rice fields from one plot to another, 

usually measuring 30 cm or more. In addition to functioning as a barrier to rice fields, 

docks, or rice field sidewalks, there are also many functions and uses for farmers. It can 

reach a width of 1 m or more in certain areas. In some regions, farmers can use rice field 

Device Data Variable Example Value Unit 

ESP32 TTGO T-

Call 
Date-Time 

2021-12-21 

10:18:06 
yyyy-mm-dd hh:mm:ss 

Gyroscope Yaw −36.219238 deg/s 

 Pitch 2.912616 deg/s 

 Roll −13.965352 deg/s 

Accelerometer X −39 m/s2 

 Y −87 m/s2 

 Z 266 m/s2 

Magnetometer Azimuth 284 deg 

GPS Longitude −8.632576 deg 

 Latitude 115.144852 deg 
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sidewalks as access roads for farming by farmers to transport crops and fertilizers during 

the fertilization period for rice plants. Routine maintenance of rice field sidewalks is 

carried out by cleaning them from weeds and sweeping or spraying herbicides. In addition 

to treating weeds, the barriers must be added with mud and trimmed to keep the rice fields 

from collapsing. 

The rice field is one of the sub-agricultures that provide staple food. Generally, 

rice fields are used for rice cultivation. However, several stages must be carried out before 

carrying out the rice planting process, including the process of ploughing the fields. 

Ploughing is the activity of cultivating the land by turning the soil so that the soil becomes 

smooth and easy to plant in. The process of ploughing rice fields consists of two 

processes, namely the process of loosening the soil and the process of refining the soil. 

The process of loosening the soil currently still uses a tractor. Many tractors are available 

today, both two- and four-wheeled. In general, the movement of the tractor when carrying 

out the process of ploughing the fields forms a spiral pattern, as in Figure 4.52, which 

was the scenario for collecting RIFIS dataset images in this study. The tractor moved 

from the start to the finish points with the RIFIS as a barrier. The path that was traversed 

is called the footprint. It can be seen in the top-view image (using a drone) of the RIFIS 

image data collection scenario in Figure 4.53. 

 
Figure 4.52. Dataset Collection Scenario. 

 

  
Figure 4.53. Dataset Collection Process. 
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The selection of the observation location was the main factor that affected the 

dynamics of the features in the RIFIS image. For example, the observation location was 

in a rice field area where the neighboring rice fields were in a condition where some had 

been ploughed, and some had not. The condition of the cultivated rice fields had similar 

characteristics to RIFISs, producing dynamic conditions according to reality. Considering 

this fact, two locations with different longitude and latitude coordinates in Bali, Indonesia 

were selected for the data collection experiment (Figure 4.54a). More details about these 

locations are provided in Figure 4.54b and Table 4.10. 

   
(a) (b) 

Figure 4.54. Data collection site. 

 

Table 4.10. Details of geographical locations for data collection. 

 

4.6.4.2. Camera and Recording Support 

To capture RIFIS images in the process of ploughing fields, the researcher used 

a GoPro Hero 9 camera. The camera settings used were auto (zoom 1.0×) with an image 

resolution of 1920 × 1080 and a 60 frames per second (fps) frame rate. The lens setting 

used in this research was wide, with an ISO in the minimum value range of 100 to a 

maximum of 6400. The three cameras were mounted on the top of the front of the tractor. 

The first camera faced the right diagonal, the second camera faced forward, and the third 

Nature of Location Location Name Geographical Coordinates 

Rice Field 1 Uma Desa Canggu −8.632394°; 115.144956° 

Rice Field 2 Uma Desa Canggu −8.632368°; 115.144836° 
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camera faced the left diagonal. The camera placement on the tractor can be seen in Figure 

4.55. Figure 4.56, it can be seen the results of the captures of the three cameras. The 

researcher recorded all video sequences of the dataset by placing the camera on top of a 

tractor, ploughing a field with three different shots (diagonal left, front, and right). Three 

sets of footage were taken with an above-shot camera angle relative to the RIFIS. 

 
Figure 4. 55. Camera Position on the Tractor. 

 
Figure 4.56. Illustration of Camera Results. 

4.6.4.3. GPS, MPU, and Compass 

The location and orientation data of the tractor were recorded to view and 

analyze the movement patterns as supplementary data. A set of hardware was embedded 

in the tractor to achieve this goal. IoT technology with the MQTT protocol was used as a 

liaison between the hardware and the server. ESP32 Lilygo T-Call 1.4 is a microcontroller 
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equipped with a SIM800L module. This allowed it to communicate over the internet 

without needing a separate access point module. Three sensors were used to obtain tractor 

movement data, namely the U-Blox Neo-6M as a GPS module to obtain location data for 

longitude and latitude coordinates. To obtain tractor orientation data, an MPU6050 GY-

521 was used as the gyroscope–accelerometer sensor and a GY-271 as the compass 

sensor. For this study, a 1-s interval was used to record all the location and orientation 

data of the tractor. Figure 4.57 illustrates the wiring in the three sensors and 

microcontroller diagrams during the data collection experiment. 

 
Figure 4.57. Wiring Diagram of GPS – Compass- MPU6050 Sensor. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

In conclusion, this study has presented a two-wheeled walk-behind tractor 

controlling system. The design and development process included mechanical 

modifications to the tractor, testing the functionality of the electronic component circuit, 

and integrating the electronic component circuit with the created software. The handlebar 

head was modified mechanically and electronically by adding several actuators to pull 

the clutch handle and move the steering linkage. A DC motor was installed as a 

controlling actuator on the tension handle and throttle lever. The final modification to the 

main bar was the addition of a weight balancer hanger to ensure that the tractor's front 

and rear loads were balanced. This system used Bluetooth to communicate between the 

actuator and the mobile application. The integration of software and electronic circuits 

has been completed successfully, allowing tractor operators to operate remotely. 

Numerous trials have been conducted to evaluate the tractor's movement in an open field. 

The field test was done in two phases: prototype and final product, to generate the low-

cost controlling system of the two-wheeled tractor using low energy use. The test results 

show a cost efficiency of 21.74% and 84.62% battery usage efficiency for the final 

product. The prototype design has been put through its paces on a G 3000 tractor. 

Numerous analysis results and enhancements are obtained from this test, which is 

required to create more efficient cost and battery life products. Based on the first test 

results, mechanical and electronic design modifications have been made and tested on a 

tractor of the G1000 type, with improved outcomes.  

In addition, preliminary studies were carried out to create mathematical models 

and simulations of tractor movements. This model is based on kinematics for 

differentially driven two-wheeled vehicles. The model moves in the direction specified 

by the coordinates (back and forth path). The simulation results show that Supervisory 

Logic Control reaches 100%, better than Pure Pursuit Control, which only gets 60% from 

the specified point. These two-controller algorithms are the results of simulations in the 

Matlab/Simulink application and became a limitation of this research. The researcher also 

collect data from GPS and Compass sensors during the field trials using IoT technology. 
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The raw data results are noisy and unstable; therefore, Kalman and second-order 

Butterworth Low Pass Filters are used. The RMSE test results show that the Butterworth 

LPF performance is better than the Kalman Filter. Further research is needed to determine 

the effects of field tests on tractors. Therefore, a path planning and waypoint patform to 

automate tractor movements is carried out. 

A Two-Dimensional path planning platform using an edge-vertex path 

algorithm for the Autonomous Walk Behind Hand Tractor has been presented. The 

algorithm automatically generates paths by considering the path interval distance, start 

point, and finish point. Field trials were conducted with a walk-behind tractor to validate 

the resulting waypoint coordinates for rice field plowing missions.  

In this study, the researcher also introduced a novel, comprehensive, and diverse 

dataset called the RIFIS dataset to allow the researchers to develop the process of 

automation of ploughing fields using hand tractors. The RIFIS dataset contained 3723 

images, 18 videos, and a JSON file with polygonal and bounding box labeling values for 

970 images. The RIFIS dataset could automate the ploughing of rice fields not just at the 

time of rice planting but also at the time of rice harvest and for various other purposes 

throughout the year. This was the first-ever compilation of rice field sidewalk annotations. 

The RIFIS enabled training deep learning models for sidewalk detection in paddy fields. 

To assess the quality of the RIFIS dataset, a Mask-RCNN model was employed to develop 

a preliminary sidewalk detection algorithm. It was projected to improve the fine-grained 

segmentation of sidewalk site discoveries and reduce false positives and negatives for 

deep learning models. As supplementary data, the tractor location and orientation excel 

files were included with ‘yaw’, ‘pitch’, and ‘roll’ values obtained from the gyroscope 

sensor; ‘x’, ‘y’, and ‘z’ values from the accelerometer sensor; and ‘a’ (azimuth) values 

from the compass sensor and the location of the tractor from the GPS sensor. This allowed 

the researchers to examine the movement patterns of the tractor. The main goal of the 

researcher RIFIS dataset was that the research and models based on the RIFIS dataset 

could be used for sidewalk detection, distance prediction, tractor location, and orientation 

tracking to build an innovative tractor autonomous control system. 

In conclusion, this research has fulfilled all of the proposed objectives by 

developing a Tractor Controlling System (TROLLS) via remote control so that farmers 
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do not need to be tired of plowing fields. In addition, a path-planning platform has also 

been created to assist farmers in implementing waypoint technology on tractors by 

considering various sizes of puddlers. The collection of datasets is also carried out as 

material for analysis of sidewalk detection using a camera. The Deep Learning Mask-

RCNN technique was used to validate the collected dataset. 

This study had four significant limitations that could be addressed in future 

research. First, future research aims to design a path with a spiral pattern and to account 

for external disturbances such as land contours when constructing the path. In addition, 

the use of IoT technology is possible in the future because this path-planning platform 

can be implemented in the cloud. Second, the use of low-cost technology makes this 

platform less precise. Future development using Real-Time Kinematic (RTK) GNSS 

could achieve better precision. Third, the RIFIS dataset was exclusively collected from 

paddy fields in Bali, Indonesia. Fourth, this research was limited to collecting images, 

videos, and annotations of paddy field sidewalks. Further research on integrating camera 

detection results and sensor readings is still needed. As a future development, sidewalk 

detection results using Mask R-CNN can be combined with basic image processing and 

detecting the distance between the lower center point of the image and the generated 

mask. The basic concepts of further research that can be developed as seen in Figure 5.1. 

This method can be implemented on all three cameras and then combined with the reading 

of several sensors to decide the tractor’s movement. In the future, researchers aim to make 

more in-depth comparisons to more precisely detect the sidewalk’s location and automate 

cultivating rice fields using hand tractors. 

 

Figure 5. 1. Future research. 
 



 

97 
 

List of Bibliography 

 

 

Abouzahir, S., Sadik, M., & Sabir, E. (2017). IoT-empowered smart agriculture: A 

real-time light-weight embedded segmentation system. Lecture Notes in 

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 10542 LNCS, 319–332. 

https://doi.org/10.1007/978-3-319-68179-5_28 

Adiyaksa, F., & Nugroho Djojomartono, P. (2020). Evaluation of Land Use Change of 

Agricultural Land into Industrial Area in Kendal Regency in Period 2014-2018. 

JGISE, 3(1). https://doi.org/10.22146/jgise 

Ahmadi Jeyed, H., & Ghaffari, A. (2019). Nonlinear estimator design based on 

extended Kalman filter approach for state estimation of articulated heavy 

vehicle. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of 

Multi-Body Dynamics, 233(2), 254–265. 

https://doi.org/10.1177/1464419318772173 

Alipour, K., Robat, A. B., & Tarvirdizadeh, B. (2019). Dynamics modeling and sliding 

mode control of tractor-trailer wheeled mobile robots subject to wheels slip. 

Mechanism and Machine Theory, 138, 16–37. 

https://doi.org/10.1016/j.mechmachtheory.2019.03.038 

Almoaili, E., & Kurdi, H. (2020). Path planning algorithm for unmanned ground 

vehicles (UGVs) in known static environments. Procedia Computer Science, 177, 

57–63. https://doi.org/10.1016/j.procs.2020.10.011 

An, V., Qu, Z., Crosby, F., Roberts, R., & An, V. (2020). A Triangulation-Based 

Coverage Path Planning. IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 50(6), 2157–2169. https://doi.org/10.1109/TSMC.2018.2806840 

Anitha, K. (2018). Role of Kalman Filters in Probabilistic Algorithm. International 

Journal of Pure and Applied Mathematics. 118 (11), 5–10. 

https://doi.org/10.12732/ijpam.v118i11.2 

Ardli Swardana. (2020). Pemanfaatan Data SIG Untuk Analisis Perubahan 

Penggunaan Lahan Sawah di Kabupaten Garut (2009-2018). Conference on 



 

98 
 

Innovation and Application of Science and Technology (CIASTECH 2020), 3(1), 

299–304. 

Arkin, E. M., Fekete, S. P., & Mitchell, J. S. B. (2000). Approximation algorithms for 

lawn mowing and milling. In Computational Geometry, 17(1-2), 25-50. 

Asadi, K., Kalkunte Suresh, A., Ender, A., Gotad, S., Maniyar, S., Anand, S., Noghabaei, 

M., Han, K., Lobaton, E., & Wu, T. (2020). An integrated UGV-UAV system for 

construction site data collection. Automation in Construction, 112. 

https://doi.org/10.1016/j.autcon.2019.103068 

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer 

Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010 

Balafoutis, A. T., van Evert, F. K., & Fountas, S. (2020). Smart farming technology 

trends: Economic and environmental effects, labor impact, and adoption readiness. 

Agronomy, 10(5). https://doi.org/10.3390/agronomy10050743 

Bao, J., Yao, X., Tang, H., & Song, A. (2018). Outdoor Navigation of a Mobile Robot 

by Following GPS Waypoints and Local Pedestrian Lane. IEEE. 

Bar-Shalom, Y., Tian, X., & Willett, P. K. (2011). Tracking and data fusion : a 

handbook of algorithms. YBS Publishing. 

Berber, M., Ustun, A., & Yetkin, M. (2012). Comparison of accuracy of GPS techniques. 

Measurement: Journal of the International Measurement Confederation, 45(7), 

1742–1746. https://doi.org/10.1016/j.measurement.2012.04.010 

Berrabah, S. A., & Baudoin, Y. (2011). GPS data correction using encoders and 

inertial navigation system (INS) sensors. In Using Robots in Hazardous 

Environments (pp. 269–282). Elsevier. 

https://doi.org/10.1533/9780857090201.2.269 

Binh, N. T., Tung, N. A., Nam, D. P., & Quang, N. H. (2019). An Adaptive Backstepping 

Trajectory Tracking Control of a Tractor Trailer Wheeled Mobile Robot. 

International Journal of Control, Automation and Systems, 17(2), 465–473. 

https://doi.org/10.1007/s12555-017-0711-0 

Bleiholder, J., & Naumann, F. (2009). Data Fusion. ACM Computing Surveys, 41(1), 1–

41. https://doi.org/10.1145/1456650.1456651 



 

99 
 

Blok, P. M., Kootstra, G., Elghor, H. E., Diallo, B., van Evert, F. K., & van Henten, E. J. 

(2022). Active learning with MaskAL reduces annotation effort for training Mask 

R-CNN on a broccoli dataset with visually similar classes. Computers and 

Electronics in Agriculture, 197. https://doi.org/10.1016/j.compag.2022.106917 

Bohrer, B., Tan, Y. K., Mitsch, S., Sogokon, A., & Platzer, A. (2019). A Formal Safety 

Net for Waypoint-Following in Ground Robots. IEEE Robotics and Automation 

Letters, 4(3), 2910–2917. https://doi.org/10.1109/LRA.2019.2923099 

Bonadies, S., & Gadsden, S. A. (2019). An overview of autonomous crop row navigation 

strategies for unmanned ground vehicles. Engineering in Agriculture, 

Environment and Food, 12(1), 24–31. https://doi.org/10.1016/j.eaef.2018.09.001 

Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., 

Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., & Goudos, S. K. (2020). 

Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in 

smart farming: A comprehensive review. Internet of Things, 18, 100187. 

https://doi.org/10.1016/j.iot.2020.100187 

Cabreira, T. M., Brisolara, L. B., & Ferreira Paulo, R. (2019). Survey on coverage path 

planning with unmanned aerial vehicles. Drones, 3(1), 1–38. 

https://doi.org/10.3390/drones3010004 

Castanedo, F. (2013). A review of data fusion techniques. In The Scientific World 

Journal, 2013. Hindawi Publishing Corporation. 

https://doi.org/10.1155/2013/704504 

Castillejo, P., Johansen, G., Cürüklü, B., Bilbao-Arechabala, S., Fresco, R., Martínez-

Rodríguez, B., Pomante, L., Rusu, C., Martínez-Ortega, J. F., Centofanti, C., 

Hakojärvi, M., Santic, M., & Häggman, J. (2020). Aggregate Farming in the Cloud: 

The AFarCloud ECSEL project. Microprocessors and Microsystems, 78. 

https://doi.org/10.1016/j.micpro.2020.103218 

Catania, P., Comparetti, A., Febo, P., Morello, G., Orlando, S., Roma, E., & Vallone, M. 

(2020). Positioning accuracy comparison of GNSS receivers used for mapping and 

guidance of agricultural machines. Agronomy, 10(7). 

https://doi.org/10.3390/agronomy10070924 



 

100 
 

Causa, F., & Fasano, G. (2021). Multiple UAVs trajectory generation and waypoint 

assignment in urban environment based on DOP maps. Aerospace Science and 

Technology, 110. https://doi.org/10.1016/j.ast.2021.106507 

Cecchinel, C., Jimenez, M., Mosser, S., & Riveill, M. (2014). An Architecture to Support 

the Collection of Big Data in the Internet of Things. In 2014 IEEE World congress 

on services, 442–449. https://doi.org/10.1109/services.2014.83 

Chang, L., Chen, Y. T., Wang, J. H., & Chang, Y. L. (2021). Rice-field mapping with 

sentinel-1a sar time-series data. Remote Sensing, 13(1), 1–25. 

https://doi.org/10.3390/rs13010103 

Choset, H., & Pignon, P. (1998). Coverage Path Planning: The Boustrophedon 

Cellular Decomposition. Field and Service Robotics. Springer, London, 203–209. 

Cohen, R., Fernie, G., & Fekr, A. R. (2020). A vision-based approach for sidewalk and 

walkway trip hazards assessment. International Journal of Environmental 

Research and Public Health, 17(22), 1–18. https://doi.org/10.3390/ijerph17228438 

Crisnapati, P. N., Maneetham, D., & Triandini, E. (2023). Trolls: a novel low-cost 

controlling system platform for walk-behind tractor. International Journal of 

Electrical and Computer Engineering (IJECE), 13(1), 842. 

https://doi.org/10.11591/ijece.v13i1.pp842-858 

Cutulle, M. A., & Maja, J. M. (2021). Determining the utility of an unmanned ground 

vehicle for weed control in specialty crop systems. Italian Journal of Agronomy, 

16(4). https://doi.org/10.4081/ija.2021.1865 

Dadashzadeh, M., Abbaspour-Gilandeh, Y., Mesri-Gundoshmian, T., Sabzi, S., 

Hernández-Hernández, J. L., Hernández-Hernández, M., & Ignacio Arribas, J. 

(2020). Weed classification for site-specific weed management using an automated 

stereo computer-vision machine-learning system in rice fields. Plants, 9(5). 

https://doi.org/10.3390/plants9050559 

Das, A., Ghosal, M., & Das, D. (2020). Studies on applications of electronics in wheel 

slip control of agricultural tractor. International Journal of Chemical Studies, 8(2), 

1483–1487. https://doi.org/10.22271/chemi.2020.v8.i2w.8970 



 

101 
 

de Simone, M. C., Rivera, Z. B., & Guida, D. (2018). Obstacle avoidance system for 

unmanned ground vehicles by using ultrasonic sensors. Machines, 6(2). 

https://doi.org/10.3390/machines6020018 

Dewangan, K. N., & Tewari, V. K. (2009). Characteristics of hand-transmitted vibration 

of a hand tractor used in three operational modes. International Journal of Industrial 

Ergonomics, 39(1), 239–245. https://doi.org/10.1016/j.ergon.2008.08.007 

Dihingia, P. C., Kumar, G. V. P., Sarma, P. K., & Neog, P. (2018). Hand-Fed Vegetable 

Transplanter for Use with a Walk-Behind-Type Hand Tractor. International 

Journal of Vegetable Science, 24(3), 254–273. 

https://doi.org/10.1080/19315260.2017.1413477 

Ding, Y., Yang, L., Zhang, D., Cui, T., Li, Y., Zhong, X., Xie, C., & Ding, Z. (2021). 

Novel low-cost control system for large high-speed corn precision planters. 

International Journal of Agricultural and Biological Engineering, 14(2), 151–

158. https://doi.org/10.25165/J.IJABE.20211402.6053 

El-Sheimy, N., & Youssef, A. (2020). Inertial sensors technologies for navigation 

applications: state of the art and future trends. Satellite Navigation, 1(1). 

https://doi.org/10.1186/s43020-019-0001-5 

Fabbri, A., Cevoli, C., & Cantalupo, G. (2017). A method for handlebars ballast 

calculation in order to reduce vibrations transmissibility in walk behind tractors. 

Journal of Agricultural Engineering, 48(2), 81–87. 

https://doi.org/10.4081/jae.2017.599 

Fang, S., Lu, Z., Wang, Z., Diao, X., Lu, Y., Gong, J., & Zhu, C. (2017). Design and 

prototype performance experiments of steering-by-wire hydraulic pressure system 

of tractor. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of 

Agricultural Engineering, 33(10), 86–93. https://doi.org/10.11975/j.issn.1002-

6819.2017.10.011 

Fotio Tiotsop, L., Servetti, A., & Masala, E. (2020). An integer linear programming 

model for efficient scheduling of UGV tasks in precision agriculture under human 

supervision. Computers and Operations Research, 114. 

https://doi.org/10.1016/j.cor.2019.104826 



 

102 
 

Fouché, G. J., & Malekian, R. (2018). Drone as an autonomous aerial sensor system for 

motion planning. Measurement: Journal of the International Measurement 

Confederation, 119, 142–155. https://doi.org/10.1016/j.measurement.2018.01.027 

Galceran, E., & Carreras, M. (2013). A Survey on Coverage Path Planning for Robotics. 

Robotics and Autonomous systems, 61(12), 1258-1276. 

Gan, H., & Lee, W. S. (2018). Development of a Navigation System for a Smart Farm. 

IFAC-PapersOnLine, 51(17), 1–4. https://doi.org/10.1016/j.ifacol.2018.08.051 

Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C., Fairbairn, D., Watson, D., & Ge, M. 

(2018). Multi-GNSS precise point positioning for precision agriculture. Precision 

Agriculture, 19(5), 895–911. https://doi.org/10.1007/s11119-018-9563-8 

Gupta, C., Tewari, V. K., Ashok Kumar, A., & Shrivastava, P. (2019). Automatic tractor 

slip-draft embedded control system. Computers and Electronics in Agriculture, 

165. https://doi.org/10.1016/j.compag.2019.104947 

Hadas, E., Jozkow, G., Walicka, A., & Borkowski, A. (2019). Apple orchard inventory 

with a LiDAR equipped unmanned aerial system. International Journal of Applied 

Earth Observation and Geoinformation, 82. 

https://doi.org/10.1016/j.jag.2019.101911 

Han, J., Xia, C., Shang, G., & Gao, X. (2017). In-field experiment of electro-hydraulic 

tillage depth draft-position mixed control on tractor. IOP Conference Series: 

Materials Science and Engineering, 274(1). https://doi.org/10.1088/1757-

899X/274/1/012028 

Han, X., Kim, H. J., Jeon, C. W., Moon, H. C., & Kim, J. H. (2017). Development of a 

low-cost GPS/INS integrated system for tractor automatic navigation. International 

Journal of Agricultural and Biological Engineering, 10(2), 123–131. 

https://doi.org/10.3965/j.ijabe.20171002.3070 

Hasheminasab, S. M., Zhou, T., & Habib, A. (2020). GNSS/INS-Assisted structure from 

motion strategies for UAV-Based imagery over mechanized agricultural fields. 

Remote Sensing, 12(3). https://doi.org/10.3390/rs12030351 

Huang, W. H. (2001). Optimal Line-sweep-based Decompositions for Coverage 

Algorithms. In Proceedings 2001 ICRA. IEEE International Conference on Robotics 

and Automation (Cat. No. 01CH37164), 1, 27-32). IEEE. 



 

103 
 

Ingle, V. K., & Proakis, J. G. (2012). Digital Signal Processing Using MATLAB ® Third 

Edition (C. Valentine, Ed.; Third). Cengage Learning. 

Jain, A., & Kanhangad, V. (2018). Human Activity Classification in Smartphones Using 

Accelerometer and Gyroscope Sensors. IEEE Sensors Journal, 18(3), 1169–1177. 

https://doi.org/10.1109/JSEN.2017.2782492 

Janulevičius, A., Damanauskas, V., & Pupinis, G. (2018). Effect of variations in front 

wheels driving lead on performance of a farm tractor with mechanical front-wheel-

drive. Journal of Terramechanics, 77, 23–30. 

https://doi.org/10.1016/j.jterra.2018.02.002 

Javad, M., & Saeid, S. (2021). Design, Fabrication and Evaluation A New Mechanism to 

Automatic Weight Transfer Control System on A Tractor. In Emirates Journal for 

Engineering Research, 26(2). https://scholarworks.uaeu.ac.ae/ejer Available 

at:https://scholarworks.uaeu.ac.ae/ejer/vol26/iss2/2 

Jeon, C. W., Kim, H. J., Yun, C., Gang, M. S., & Han, X. (2021). An entry-exit path 

planner for an autonomous tractor in a paddy field. Computers and Electronics in 

Agriculture, 191. https://doi.org/10.1016/j.compag.2021.106548 

Jinghong, L., Yanan, T., Yantao, Z., & Shuoyang, L. (2018). Design and 

implementation of blind sidewalk recognition system based on FPGA. In 

Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, 

2325–2329. https://doi.org/10.1109/CCDC.2018.8407514 

Journal, I. (2021). Design and Implementation of Women Safety System Based On IOT 

Technology, International Research Journal of Engineering and Technology 

(IRJET), 8(6), 1258-1261. 

Kapanoglu, M., Alikalfa, M., Ozkan, M., Yazıcı, A., & Parlaktuna, O. (2012). A pattern-

based genetic algorithm for multi-robot coverage path planning minimizing 

completion time. Journal of Intelligent Manufacturing, 23(4), 1035–1045. 

https://doi.org/10.1007/s10845-010-0404-5 

Kaplan, E., & Hegarty, C. (2017). Understanding GPS/GNSS: Principles and 

Applications Second Edition, Artech house. 



 

104 
 

Kapsalis, D., Sename, O., Milanes, V., & Martinez Molina, J. J. (2021). Design and 

Experimental Validation of an LPV Pure Pursuit Automatic Steering Controller. 

IFAC-PapersOnLine, 54(2), 63–68. https://doi.org/10.1016/j.ifacol.2021.06.010 

Karataş, G. B., Karagoz, P., & Ayran, O. (2021). Trajectory pattern extraction and 

anomaly detection for maritime vessels. Internet of Things (Netherlands), 16. 

https://doi.org/10.1016/j.iot.2021.100436 

Kassaeiyan, P., Alipour, K., & Tarvirdizadeh, B. (2020). A full-state trajectory tracking 

controller for tractor-trailer wheeled mobile robots. Mechanism and Machine 

Theory, 150. https://doi.org/10.1016/j.mechmachtheory.2020.103872 

Kiratiratanapruk, K., Temniranrat, P., Kitvimonrat, A., Sinthupinyo, W., & 

Patarapuwadol, S. (2020). Using Deep Learning Techniques to Detect Rice Diseases 

from Images of Rice Fields. In H. Fujita, P. Fournier-Viger, M. Ali, & J. Sasaki 

(Eds.), Trends in Artificial Intelligence Theory and Applications Artificial 

Intelligence Practices, 12144, 225–237. Springer International Publishing. 

https://doi.org/10.1007/978-3-030-55789-8 

Kitiashvili, I. N. (2019). Application of Synoptic Magnetograms for Prediction of Solar 

Activity Using Ensemble Kalman Filter. In In Solar Heliospheric Interplanetary 

Environment (SHINE). 

Kragh, M. F., Christiansen, P., Laursen, M. S., Larsen, M., Steen, K. A., Green, O., 

Karstoft, H., & Jørgensen, R. N. (2017). FieldSAFE: Dataset for obstacle detection 

in agriculture. Sensors (Switzerland), 17(11). https://doi.org/10.3390/s17112579 

Kumar, G. V. P., & Raheman, H. (2011). Development of a walk-behind type hand tractor 

powered vegetable transplanter for paper pot seedlings. Biosystems Engineering, 

110(2), 189–197. https://doi.org/10.1016/j.biosystemseng.2011.08.001 

Kumar, H., & Pimparkar, P. (2018). Data Fusion for the Internet of Things. International 

Journal of Scientific and Research Publications (IJSRP), 8(3). 

https://doi.org/10.29322/ijsrp.8.3.2018.p7541 

Lakhwani, K., Gianey, H., Agarwal, N., & Gupta, S. (2019). Development of IoT for 

Smart Agriculture a Review. Advances in Intelligent Systems and Computing, 841, 

425–432. https://doi.org/10.1007/978-981-13-2285-3_50 



 

105 
 

Lakitan, B., Lindiana, L., Widuri, L. I., Kartika, K., Siaga, E., Meihana, M., & Wijaya, 

A. (2019). Inclusive and ecologically-sound food crop cultivation at tropical non-

tidal wetlands in Indonesia. Agrivita, 41(1), 23–31. 

https://doi.org/10.17503/agrivita.v40i0.1717 

Le, A. V., Prabakaran, V., Sivanantham, V., & Mohan, R. E. (2018). Modified a-star 

algorithm for efficient coverage path planning in tetris inspired self-reconfigurable 

robot with integrated laser sensor. Sensors (Switzerland), 18(8). 

https://doi.org/10.3390/s18082585 

Lee, S. K., Yoon, S. Y., & Won, J. S. (2018). Vegetation height estimate in rice fields 

using single polarization TanDEM-X Science Phase data. Remote Sensing, 10(11). 

https://doi.org/10.3390/rs10111702 

Lezoche, M., Panetto, H., Kacprzyk, J., Hernandez, J. E., & Alemany Díaz, M. M. E. 

(2020). Agri-food 4.0: A survey of the Supply Chains and Technologies for the 

Future Agriculture. In Computers in Industry, 117. Elsevier B.V. 

https://doi.org/10.1016/j.compind.2020.103187 

Li, Q., Li, R., Ji, K., & Dai, W. (2016). Kalman filter and its application. Proceedings 

- 8th International Conference on Intelligent Networks and Intelligent Systems, 

ICINIS 2015, 74–77. https://doi.org/10.1109/ICINIS.2015.35 

Li, S., Lu, J., Liang, G., Wu, X., Zhang, M., Plougonven, E., Wang, Y., Gao, L., 

Abdelrhman, A. A., Song, X., Liu, X., & Degré, A. (2021). Factors governing soil 

water repellency under tillage management: The role of pore structure and 

hydrophobic substances. Land Degradation and Development, 32(2), 1046–1059. 

https://doi.org/10.1002/ldr.3779 

Li, Y., Chen, H., Joo Er, M., & Wang, X. (2011). Coverage path planning for UAVs based 

on enhanced exact cellular decomposition method. Mechatronics, 21(5), 876–885. 

https://doi.org/10.1016/j.mechatronics.2010.10.009 

Liu, J., & Guo, G. (2021). Vehicle Localization during GPS Outages with Extended 

Kalman Filter and Deep Learning. IEEE Transactions on Instrumentation and 

Measurement, 70. https://doi.org/10.1109/TIM.2021.3097401 

Livada, B., Vujić, S., Radić, D., Unkašević, T., & Banjac, Z. (2019). Digital magnetic 

compass integration with stationary, land-based electro-optical multi-sensor 



 

106 
 

surveillance system. Sensors (Switzerland), 19(19). 

https://doi.org/10.3390/s19194331 

Ludwig, S. A., & Jiménez, A. R. (2018). Optimization of gyroscope and 

accelerometer/magnetometer portion of basic attitude and heading reference 

system. 5th IEEE International Symposium on Inertial Sensors and Systems, 

INERTIAL 2018 - Proceedings, 1–4. https://doi.org/10.1109/ISISS.2018.8358127 

Magnetic-Declination.com. (2022, February 1). Magnetic Declination. 

https://www.magnetic-declination.com 

Mahbub, M. (2020). A smart farming concept based on smart embedded electronics, 

internet of things and wireless sensor network. Internet of Things, 9, 100161. 

https://doi.org/10.1016/j.iot.2020.100161 

Mammarella, M., Comba, L., Biglia, A., Dabbene, F., & Gay, P. (2020). Cooperative 

Agricultural Operations of Aerial and Ground Unmanned Vehicles. 2020 IEEE 

International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 

2020 - Proceedings, 224–229. 

https://doi.org/10.1109/MetroAgriFor50201.2020.9277573 

Mammarella, M., Comba, L., Biglia, A., Dabbene, F., & Gay, P. (2021). Cooperation of 

unmanned systems for agricultural applications: A theoretical framework. 

Biosystems Engineering, 223, 61-80.  

https://doi.org/10.1016/j.biosystemseng.2021.11.008 

Mansouri, S. S., Kanellakis, C., Fresk, E., Kominiak, D., & Nikolakopoulos, G. (2018). 

Cooperative coverage path planning for visual inspection. Control Engineering 

Practice, 74, 118–131. https://doi.org/10.1016/j.conengprac.2018.03.002 

Mebarki, N., Rekioua, T., Mokrani, Z., & Rekioua, D. (2015). Supervisor control for 

stand-alone photovoltaic/hydrogen/ battery bank system to supply energy to an 

electric vehicle. International Journal of Hydrogen Energy, 40(39), 13777–13788. 

https://doi.org/10.1016/j.ijhydene.2015.03.024 

Moinfar, A. M., Shahgholi, G., Gilandeh, Y. A., & Gundoshmian, T. M. (2020). The 

effect of the tractor driving system on its performance and fuel consumption. 

Energy, 202. https://doi.org/10.1016/j.energy.2020.117803 



 

107 
 

Moravec, H. P., & Elfes, A. (1985). High Resolution Maps from Wide Angle Sonar. 

1985 IEEE International Conference on Robotics and Automation, 116–121. 

Namdari, M., Rafiee, S., & Jafari, A. (2011). Using the FMEA method to Optimize fuel 

consumption in Tillage by Moldboard Plow. In International Journal of Applied 

Engineering Research, Dindigul, 1(4), 734-742. 

Negrete, J. C. (2020). Analysis of the current situation of two wheels tractors in Mexico. 

Horticulture International Journal, 4(1), 28-33. 

https://doi.org/10.15406/hij.2020.04.00152 

Nguyen, T. T., Ospina, R., Noguchi, N., Okamoto, H., & Ngo, Q. H. (2021). Real-time 

disease detection in rice fields in the vietnamese mekong delta. Environmental 

Control in Biology, 59(2), 77–85. https://doi.org/10.2525/ecb.59.77 

Nukala, R., Panduru, K., Shields, A., Riordan, D., Doody, P., & Walsh, J. (2016, August 

1). Internet of Things: A review from “Farm to Fork”. In 2016 27th Irish Signals 

and Systems Conference, ISSC 2016, 1-6. 

https://doi.org/10.1109/ISSC.2016.7528456 

Nwakaire, J. N., Ezeagba, A. C., & Ogoegbulem, O. C. (2018). Refurbishment and 

evaluation of a two-wheeled tractor. Nigerian Journal of Technology, 37(4), 1168. 

https://doi.org/10.4314/njt.v37i4.42 

Ohi, N., Lassak, K., Watson, R., Strader, J., Du, Y., Yang, C., Hedrick, G., Nguyen, J., 

Harper, S., Reynolds, D., Kilic, C., Hikes, J., Mills, S., Castle, C., Buzzo, B., 

Waterland, N., Gross, J., Park, Y.-L., Li, X., & Gu, Y. (2018). Design of an 

Autonomous Precision Pollination Robot. 2018 IEEE RSJ International 

Conference on Intelligent Robots and Systems (IROS), 7711–7718. 

Ospina, R., & Noguchi, N. (2020). Improved inclination correction method applied to the 

guidance system of agricultural vehicles. International Journal of Agricultural and 

Biological Engineering, 13(6), 183–194. 

https://doi.org/10.25165/j.ijabe.20201306.6012 

Paman, U., Uchida, S., & Inaba, S. (2010). Economic potential of tractor hire business in 

Riau Province, Indonesia: A case study of small tractors for small rice farms. In 

Agric Eng Int: CIGR Journal 12(1). http://www.cigrjournal.org 



 

108 
 

Preparata, F. P., & Shamos, M. I. (2012). Computational Geometry: An Introduction (D. 

Gries & F. Schneider, Eds.). Springer Science & Business Media. 

Qadri, S., Aslam, T., Nawaz, S. A., Saher, N., Razzaq, A., Ur Rehman, M., Ahmad, N., 

Shahzad, F., & Furqan Qadri, S. (2021). A machine vision approach for 

classification the rice varieties using statistical features. International Journal of 

Food Properties, 24(1), 1615–1630. 

https://doi.org/10.1080/10942912.2021.1986523 

Qi, L., Zhang, T., Xu, K., Pan, H., Zhang, Z., & Yuan, Y. (2021). A novel terrain adaptive 

omni-directional unmanned ground vehicle for underground space emergency: 

Design, modeling and tests. Sustainable Cities and Society, 65. 

https://doi.org/10.1016/j.scs.2020.102621 

Quaglia, G., Visconte, C., Scimmi, L. S., Melchiorre, M., Cavallone, P., & Pastorelli, S. 

(2019). Design of the positioning mechanism of an unmanned ground vehicle for 

precision agriculture. Mechanisms and Machine Science, 73, 3531–3540. 

https://doi.org/10.1007/978-3-030-20131-9_348 

RADMANESH, M., SHARMA, B., KUMAR, M., & FRENCH, D. (2021). PDE solution 

to UAV/UGV trajectory planning problem by spatio-temporal estimation during 

wildfires. Chinese Journal of Aeronautics, 34(5), 601–616. 

https://doi.org/10.1016/j.cja.2020.11.002 

Rahman, M. M., Ishii, K., & Noguchi, N. (2019). Optimum harvesting area of convex 

and concave polygon field for path planning of robot combine harvester. Intelligent 

Service Robotics, 12(2), 167–179. https://doi.org/10.1007/s11370-018-00273-4 

Rains, G. C., Faircloth, A. G., Thai, C., & Raper, R. L. (2014). Evaluation of a simple 

pure pursuit path-following algorithm for an autonomous, articulated-steer vehicle. 

Applied Engineering in Agriculture, 30(3), 367–374. 

https://doi.org/10.13031/aea.30.10347 

Ramadhani, F., Pullanagari, R., Kereszturi, G., & Procter, J. (2020). Automatic mapping 

of rice growth stages using the integration of sentinel-2, mod13q1, and sentinel-1. 

Remote Sensing, 12(21), 1–21. https://doi.org/10.3390/rs12213613 



 

109 
 

Roldán, J. J., Cerro, J. del, Garzón‐Ramos, D., Garcia‐Aunon, P., Garzón, M., León, J. 

de, & Barrientos, A. (2018). Robots in Agriculture: State of Art and Practical 

Experiences. In Service Robots, 67-90. https://doi.org/10.5772/intechopen.69874 

Rondelli, V., Franceschetti, B., & Mengoli, D. (2022). A Review of Current and 

Historical Research Contributions to the Development of Ground Autonomous 

Vehicles for Agriculture. Sustainability, 14(15), 9221. 

https://doi.org/10.3390/su14159221 

Ruiz-Larrea, A., Roldán, J. J., Garzón, M., del Cerro, J., & Barrientos, A. (2016). A UGV 

approach to measure the ground properties of greenhouses. In Advances in 

Intelligent Systems and Computing, 418, 3–13. Springer Verlag. 

https://doi.org/10.1007/978-3-319-27149-1_1 

Sadhish Prabhu, Kannan, Indra Gandhi, Irfanuddin, & Munawir. (2018). GPS Controlled 

Autonomous Bot for Unmanned Delivery, 128-132. IEEE. 

Santos, L. C., Santos, F. N., Solteiro Pires, E. J., Valente, A., Costa, P., & Magalhaes, S. 

(2020). Path planning for ground robots in agriculture: A short review. 2020 

IEEE International Conference on Autonomous Robot Systems and Competitions, 

ICARSC 2020, 61–66. https://doi.org/10.1109/ICARSC49921.2020.9096177 

Sarkka, O., Nieminen, T., Suuriniemi, S., & Kettunen, L. (2017). A Multi-Position 

Calibration Method for Consumer-Grade Accelerometers, Gyroscopes, and 

Magnetometers to Field Conditions. IEEE Sensors Journal, 17(11), 3470–3481. 

https://doi.org/10.1109/JSEN.2017.2694488 

Shafaei, S. M., Loghavi, M., & Kamgar, S. (2018). An extensive validation of computer 

simulation frameworks for neural prognostication of tractor tractive efficiency. 

Computers and Electronics in Agriculture, 155, 283–297. 

https://doi.org/10.1016/j.compag.2018.10.027 

Shafaei, S. M., Loghavi, M., & Kamgar, S. (2019). Development and implementation of 

a human machine interface-assisted digital instrumentation system for high precision 

measurement of tractor performance parameters. Engineering in Agriculture, 

Environment and Food, 12(1), 11–23. https://doi.org/10.1016/j.eaef.2018.08.006 

Shafaei, S. M., Loghavi, M., & Kamgar, S. (2020a). Ascertainment of driving lead of 

tractor front wheels as loaded by draft force. Measurement: Journal of the 



 

110 
 

International Measurement Confederation, 165. 

https://doi.org/10.1016/j.measurement.2020.108134 

Shafaei, S. M., Loghavi, M., & Kamgar, S. (2020b). Benchmark of an intelligent fuzzy 

calculator for admissible estimation of drawbar pull supplied by mechanical front 

wheel drive tractor. Artificial Intelligence in Agriculture, 4, 209–218. 

https://doi.org/10.1016/j.aiia.2020.10.001 

Shafaei, S. M., Loghavi, M., & Kamgar, S. (2021). Fundamental realization of 

longitudinal slip efficiency of tractor wheels in a tillage practice. Soil and Tillage 

Research, 205. https://doi.org/10.1016/j.still.2020.104765 

Shao, H., Tang, R., Lei, Y., Mu, J., Guan, Y., & Xiang, Y. (2021). Rice ear counting 

based on image segmentation and establishment of a dataset. Plants, 10(8). 

https://doi.org/10.3390/plants10081625 

Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A 

systematic literature review on machine learning applications for sustainable 

agriculture supply chain performance. Computers and Operations Research, 119. 

https://doi.org/10.1016/j.cor.2020.104926 

Shiotsu, F., Sakagami, N., Asagi, N., Suprapta, D. N., Agustiani, N., Nitta, Y., & 

Komatsuzaki, M. (2015). Initiation and dissemination of organic rice cultivation in 

Bali, Indonesia. Sustainability (Switzerland), 7(5), 5171–5181. 

https://doi.org/10.3390/su7055171 

Shyrokau, B., de Winter, J., Stroosma, O., Dijksterhuis, C., Loof, J., van Paassen, R., & 

Happee, R. (2018). The effect of steering-system linearity, simulator motion, and 

truck driving experience on steering of an articulated tractor-semitrailer 

combination. Applied Ergonomics, 71, 17–28. 

https://doi.org/10.1016/j.apergo.2018.03.018 

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to Autonomous 

Mobile Robots. 

Singh, D., Ichiura, S., & Katahira, M. (2020). Growth information acquisition by 

unmanned ground vehicle and artificial intelligence in rice. ASABE 2020 Annual 

International Meeting. https://doi.org/10.13031/aim.202000315 



 

111 
 

Song, J., & Gupta, S. (2018). An Online Coverage Path Planning Algorithm. IEEE 

Transactions on Robotics, 34(2), 526–533. 

https://doi.org/10.1109/TRO.2017.2780259 

Soylu, S., & Çarman, K. (2021). Fuzzy logic based automatic slip control system for 

agricultural tractors. Journal of Terramechanics, 95, 25–32. 

https://doi.org/10.1016/j.jterra.2021.03.001 

Syuhada, A., Armanto, M. E., Siswanto, A., Yazid, M., & Wildayana, E. (2020). Food 

security and environmental sustainability on the south sumatra Wetlands, Indonesia. 

Systematic Reviews in Pharmacy, 11(3), 457–464. 

https://doi.org/10.5530/srp.2020.3.58 

Togashi, F., Misaka, T., Löhner, R., & Obayashi, S. (2018). Application of Ensemble 

Kalman Filter to Pedestrian Flow. Collective Dynamics, 5, 467-470. 

Tomera, M. (2016). Hybrid real-time way-point controller for ships. 2016 21st 

International Conference on Methods and Models in Automation and Robotics, 

MMAR 2016, 630–635. https://doi.org/10.1109/MMAR.2016.7575209 

Vasquez-Gomez, J. I., Marciano-Melchor, M., Valentin, L., & Herrera-Lozada, J. C. 

(2020). Coverage Path Planning for 2D Convex Regions. Journal of Intelligent and 

Robotic Systems: Theory and Applications, 97(1), 81–94. 

https://doi.org/10.1007/s10846-019-01024-y 

Wang, H., Lyu, S., & Ren, Y. (2021). Paddy rice imagery dataset for panicle 

segmentation. Agronomy, 11(8). https://doi.org/10.3390/agronomy11081542 

Wang, H., & Noguchi, N. (2018). Adaptive turning control for an agricultural robot 

tractor. International Journal of Agricultural and Biological Engineering, 11(6), 

113–119. https://doi.org/10.25165/j.ijabe.20181106.3605 

Wang, H., & Noguchi, N. (2019a). Navigation of a robot tractor using the centimeter level 

augmentation information via Quasi-Zenith Satellite System. Engineering in 

Agriculture, Environment and Food, 12(4), 414–419. 

https://doi.org/10.1016/j.eaef.2019.06.003 

Wang, H., & Noguchi, N. (2019b). Navigation of a robot tractor using the centimeter 

level augmentation information via Quasi-Zenith Satellite System. Engineering in 



 

112 
 

Agriculture, Environment and Food, 12(4), 414–419. 

https://doi.org/10.1016/j.eaef.2019.06.003 

Wang, L., Lan, Y., Zhang, Y., Zhang, H., Tahir, M. N., Ou, S., Liu, X., & Chen, P. (2019). 

Applications and prospects of agricultural unmanned aerial vehicle obstacle 

avoidance technology in China. In Sensors (Switzerland) 19(3). MDPI AG. 

https://doi.org/10.3390/s19030642 

Wang, S., Sun, G., Zheng, B., & Du, Y. (2021). A crop image segmentation and extraction 

algorithm based on mask RCNN. Entropy, 23(9). 

https://doi.org/10.3390/e23091160 

Warden, P., & Situnayake, D. (2019). TinyML Machine Learning with TensorFlow Lite 

on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly Media. 

Wei, M., & Isler, V. (2018, May 21). Coverage Path Planning under the Energy 

Constraint. 2018 IEEE International Conference on Robotics and Automation 

(ICRA), 368-373. 

Wu, C., Chen, Z., Wang, D., Kou, Z., Cai, Y., & Yang, W. (2019). Behavior modelling 

and sensing for machinery operations using smartphone’s sensor data: A case study 

of forage maize sowing. International Journal of Agricultural and Biological 

Engineering, 12(6), 66–74. https://doi.org/10.25165/j.ijabe.20191206.4702 

Wu, T., & Hung, J. Y. (2017, May 10). State estimation for a tractor-trailer system 

using adaptive unscented Kalman filter. Conference Proceedings - IEEE 

SOUTHEASTCON, 1-5. https://doi.org/10.1109/SECON.2017.7925342 

Wulandari, Y. A., Hartadi, R., & Sunartomo, A. F. (2017). Analisis faktor-faktor yang 

mempengaruhi keputusan petani melakukan konversi lahan sawah dan dampaknya 

terhadap pendapatan petani (Studi Kasus Konversi Lahan Sawah di Kecamatan 

Kaliwates Kabupaten Jember). Jurnal Agribest, 1(2), 152–167. 

Xiao, M. H., Zhao, J., Wang, Y. W., Zhang, H. J., Lu, Z. X., & Wei, W. H. (2018). Fuel 

economy of multiple conditions self-adaptive tractors with hydro-mechanical CVT. 

International Journal of Agricultural and Biological Engineering, 11(3), 102–

109. https://doi.org/10.25165/j.ijabe.20181103.2158 

Yakkundimath, R., Saunshi, G., Anami, B., & Palaiah, S. (2022). Classification of Rice 

Diseases using Convolutional Neural Network Models. Journal of The Institution 



 

113 
 

of Engineers (India): Series B, 103(4), 1047-1059. https://doi.org/10.1007/s40031-

021-00704-4 

Yang, M. der, Tseng, H. H., Hsu, Y. C., Yang, C. Y., Lai, M. H., & Wu, D. H. (2021). A 

UAV open dataset of rice paddies for deep learning practice. Remote Sensing, 13(7). 

https://doi.org/10.3390/rs13071358 

Yin, X., Wang, Y., Chen, Y., Jin, C., & Du, J. (2020). Development of autonomous 

navigation controller for agricultural vehicles. International Journal of 

Agricultural and Biological Engineering, 13(4), 70–76. 

https://doi.org/10.25165/j.ijabe.20201304.5470 

Yu, Y., Zhang, K., Yang, L., & Zhang, D. (2019). Fruit detection for strawberry 

harvesting robot in non-structural environment based on Mask-RCNN. Computers 

and Electronics in Agriculture, 163. https://doi.org/10.1016/j.compag.2019.06.001 

Zein, Y., Darwiche, M., & Mokhiamar, O. (2018). GPS tracking system for autonomous 

vehicles. Alexandria Engineering Journal, 57(4), 3127–3137. 

https://doi.org/10.1016/j.aej.2017.12.002 

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for 

precision agriculture: A review. In Precision Agriculture, 13(6), 693–712). 

https://doi.org/10.1007/s11119-012-9274-5 

Zhao, Z., Zhang, Y., Long, L., Lu, Z., & Shi, J. (2022). Efficient and adaptive lidar–

visual–inertial odometry for agricultural unmanned ground vehicle. International 

Journal of Advanced Robotic Systems, 19(2). 

https://doi.org/10.1177/17298806221094925 

Zhou, H., Hu, L., Luo, X., Tang, L., Du, P., Mao, T., Zhao, R., & He, J. (2020). Design 

and test of laser-controlled paddy field levelling-beater. International Journal of 

Agricultural and Biological Engineering, 13(1), 57–65. 

https://doi.org/10.25165/j.ijabe.20201301.4989 

Zhu, D., Tian, C., Sun, B., & Luo, C. (2019). Complete Coverage Path Planning of 

Autonomous Underwater Vehicle Based on GBNN Algorithm. Journal of 

Intelligent and Robotic Systems: Theory and Applications, 94(1), 237–249. 

https://doi.org/10.1007/s10846-018-0787-7 



 

114 
 

Zoto, J., Musci, M. A., Khaliq, A., Chiaberge, M., & Aicardi, I. (2020a). Automatic Path 

Planning for Unmanned Ground Vehicle Using UAV Imagery. Advances in 

Intelligent Systems and Computing, 980, 223–230. https://doi.org/10.1007/978-3-

030-19648-6_26 

  

  



 

115 
 

APPENDICES 

 

  



 

116 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

PYTHON PATH PLANNING SOURCE CODE 

  



 

117 
 

import math 

import os 

import sys 

from enum import IntEnum 

 

import numpy as np 

from scipy.spatial.transform import Rotation as Rot 

import matplotlib.pyplot as plt 

#import pdb 

 

sys.path.append(os.path.dirname(os.path.abspath(__file__)) + 

"/../Mapping") 

 

try: 

    from grid_map_lib.grid_map_lib import GridMap 

except ImportError: 

    raise 

 

do_animation = True 

 

 

class SweepSearcher: 

    class SweepDirection(IntEnum): 

        UP = 1 

        DOWN = -1 

 

    class MovingDirection(IntEnum): 

        RIGHT = 1 

        LEFT = -1 

 

    def __init__(self, 

                 moving_direction, sweep_direction, x_inds_goal_y, 

goal_y): 

        self.moving_direction = moving_direction 

        self.sweep_direction = sweep_direction 

        self.turing_window = [] 

        self.update_turning_window() 

        self.x_indexes_goal_y = x_inds_goal_y 

        self.goal_y = goal_y 

 

    def move_target_grid(self, c_x_index, c_y_index, grid_map): 

        n_x_index = self.moving_direction + c_x_index 

        n_y_index = c_y_index 

 

        # found safe grid 

        if not grid_map.check_occupied_from_xy_index(n_x_index, 

n_y_index, 

                                                     

occupied_val=0.5): 

            return n_x_index, n_y_index 

        else:  # occupied 

            next_c_x_index, next_c_y_index = 

self.find_safe_turning_grid( 

                c_x_index, c_y_index, grid_map) 

            if (next_c_x_index is None) and (next_c_y_index is None): 

                # moving backward 
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                next_c_x_index = -self.moving_direction + c_x_index 

                next_c_y_index = c_y_index 

                if 

grid_map.check_occupied_from_xy_index(next_c_x_index, 

                                                         

next_c_y_index): 

                    # moved backward, but the grid is occupied by 

obstacle 

                    return None, None 

            else: 

                # keep moving until end 

                while not grid_map.check_occupied_from_xy_index( 

                        next_c_x_index + self.moving_direction, 

                        next_c_y_index, occupied_val=0.5): 

                    next_c_x_index += self.moving_direction 

                self.swap_moving_direction() 

            return next_c_x_index, next_c_y_index 

 

    def find_safe_turning_grid(self, c_x_index, c_y_index, grid_map): 

 

        for (d_x_ind, d_y_ind) in self.turing_window: 

 

            next_x_ind = d_x_ind + c_x_index 

            next_y_ind = d_y_ind + c_y_index 

 

            # found safe grid 

            if not grid_map.check_occupied_from_xy_index(next_x_ind, 

                                                         next_y_ind, 

                                                         

occupied_val=0.5): 

                return next_x_ind, next_y_ind 

 

        return None, None 

 

    def is_search_done(self, grid_map): 

        for ix in self.x_indexes_goal_y: 

            if not grid_map.check_occupied_from_xy_index(ix, 

self.goal_y, 

                                                         

occupied_val=0.5): 

                return False 

 

        # all lower grid is occupied 

        return True 

 

    def update_turning_window(self): 

        # turning window definition 

        # robot can move grid based on it. 

        self.turing_window = [ 

            (self.moving_direction, 0.0), 

            (self.moving_direction, self.sweep_direction), 

            (0, self.sweep_direction), 

            (-self.moving_direction, self.sweep_direction), 

        ] 

 

    def swap_moving_direction(self): 
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        self.moving_direction *= -1 

        self.update_turning_window() 

 

    def search_start_grid(self, grid_map): 

        x_inds = [] 

        y_ind = 0 

        if self.sweep_direction == self.SweepDirection.DOWN: 

            x_inds, y_ind = search_free_grid_index_at_edge_y( 

                grid_map, from_upper=True) 

        elif self.sweep_direction == self.SweepDirection.UP: 

            x_inds, y_ind = search_free_grid_index_at_edge_y( 

                grid_map, from_upper=False) 

 

        if self.moving_direction == self.MovingDirection.RIGHT: 

            return min(x_inds), y_ind 

        elif self.moving_direction == self.MovingDirection.LEFT: 

            return max(x_inds), y_ind 

 

        raise ValueError("self.moving direction is invalid ") 

 

 

def find_sweep_direction_and_start_position(ox, oy): 

    # find sweep_direction 

    max_dist = 0.0 

    vec = [0.0, 0.0] 

    sweep_start_pos = [0.0, 0.0] 

    for i in range(len(ox) - 1): 

        dx = ox[i + 1] - ox[i] 

        dy = oy[i + 1] - oy[i] 

        d = np.hypot(dx, dy) 

 

        if d > max_dist: 

            max_dist = d 

            vec = [dx, dy] 

            sweep_start_pos = [ox[i], oy[i]] 

 

    return vec, sweep_start_pos 

 

 

def convert_grid_coordinate(ox, oy, sweep_vec, sweep_start_position): 

    tx = [ix - sweep_start_position[0] for ix in ox] 

    ty = [iy - sweep_start_position[1] for iy in oy] 

    th = math.atan2(sweep_vec[1], sweep_vec[0]) 

    rot = Rot.from_euler('z', th).as_matrix()[0:2, 0:2] 

    converted_xy = np.stack([tx, ty]).T @ rot 

 

    return converted_xy[:, 0], converted_xy[:, 1] 

 

 

def convert_global_coordinate(x, y, sweep_vec, sweep_start_position): 

    th = math.atan2(sweep_vec[1], sweep_vec[0]) 

    rot = Rot.from_euler('z', -th).as_matrix()[0:2, 0:2] 

    converted_xy = np.stack([x, y]).T @ rot 

    rx = [ix + sweep_start_position[0] for ix in converted_xy[:, 0]] 

    ry = [iy + sweep_start_position[1] for iy in converted_xy[:, 1]] 

    return rx, ry 
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def search_free_grid_index_at_edge_y(grid_map, from_upper=False): 

    y_index = None 

    x_indexes = [] 

 

    if from_upper: 

        x_range = range(grid_map.height)[::-1] 

        y_range = range(grid_map.width)[::-1] 

    else: 

        x_range = range(grid_map.height) 

        y_range = range(grid_map.width) 

 

    for iy in x_range: 

        for ix in y_range: 

            if not grid_map.check_occupied_from_xy_index(ix, iy): 

                y_index = iy 

                x_indexes.append(ix) 

        if y_index: 

            break 

 

    return x_indexes, y_index 

 

 

def setup_grid_map(ox, oy, resolution, sweep_direction, 

offset_grid=10): 

    width = math.ceil((max(ox) - min(ox)) / resolution) + offset_grid 

    height = math.ceil((max(oy) - min(oy)) / resolution) + offset_grid 

    center_x = (np.max(ox) + np.min(ox)) / 2.0 

    center_y = (np.max(oy) + np.min(oy)) / 2.0 

 

    grid_map = GridMap(width, height, resolution, center_x, center_y) 

    grid_map.print_grid_map_info() 

    grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False) 

    grid_map.expand_grid() 

 

    x_inds_goal_y = [] 

    goal_y = 0 

    if sweep_direction == SweepSearcher.SweepDirection.UP: 

        x_inds_goal_y, goal_y = search_free_grid_index_at_edge_y( 

            grid_map, from_upper=True) 

    elif sweep_direction == SweepSearcher.SweepDirection.DOWN: 

        x_inds_goal_y, goal_y = search_free_grid_index_at_edge_y( 

            grid_map, from_upper=False) 

 

    return grid_map, x_inds_goal_y, goal_y 

 

 

def sweep_path_search(sweep_searcher, grid_map, 

grid_search_animation=False): 

    # search start grid 

    c_x_index, c_y_index = sweep_searcher.search_start_grid(grid_map) 

    if not grid_map.set_value_from_xy_index(c_x_index, c_y_index, 

0.5): 

        print("Cannot find start grid") 

        return [], [] 
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    x, y = 

grid_map.calc_grid_central_xy_position_from_xy_index(c_x_index, 

                                                                

c_y_index) 

    px, py = [x], [y] 

 

    fig, ax = None, None 

    if grid_search_animation: 

        fig, ax = plt.subplots() 

        # for stopping simulation with the esc key. 

        fig.canvas.mpl_connect( 

            'key_release_event', 

            lambda event: [exit(0) if event.key == 'escape' else 

None]) 

 

    while True: 

        c_x_index, c_y_index = 

sweep_searcher.move_target_grid(c_x_index, 

                                                               

c_y_index, 

                                                               

grid_map) 

 

        if sweep_searcher.is_search_done(grid_map) or ( 

                c_x_index is None or c_y_index is None): 

            print("Done") 

            break 

 

        x, y = grid_map.calc_grid_central_xy_position_from_xy_index( 

            c_x_index, c_y_index) 

 

        px.append(x) 

        py.append(y) 

 

        grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5) 

 

        if grid_search_animation: 

            grid_map.plot_grid_map(ax=ax) 

            plt.pause(1.0) 

 

    return px, py 

 

 

def planning(ox, oy, resolution, 

             moving_direction=SweepSearcher.MovingDirection.RIGHT, 

             sweeping_direction=SweepSearcher.SweepDirection.UP, 

             ): 

    sweep_vec, sweep_start_position = 

find_sweep_direction_and_start_position( 

        ox, oy) 

 

    rox, roy = convert_grid_coordinate(ox, oy, sweep_vec, 

                                       sweep_start_position) 
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    grid_map, x_inds_goal_y, goal_y = setup_grid_map(rox, roy, 

resolution, 

                                                     

sweeping_direction) 

 

    sweep_searcher = SweepSearcher(moving_direction, 

sweeping_direction, 

                                   x_inds_goal_y, goal_y) 

 

    px, py = sweep_path_search(sweep_searcher, grid_map) 

 

    rx, ry = convert_global_coordinate(px, py, sweep_vec, 

                                       sweep_start_position) 

 

    print("Path length:", len(rx)) 

 

    return rx, ry 

 

 

def planning_animation(ox, oy, resolution):  # pragma: no cover 

    px, py = planning(ox, oy, resolution) 

 

    # animation 

    if do_animation: 

        for ipx, ipy in zip(px, py): 

            plt.cla() 

            # for stopping simulation with the esc key. 

            plt.gcf().canvas.mpl_connect( 

                'key_release_event', 

                lambda event: [exit(0) if event.key == 'escape' else 

None]) 

            plt.plot(ox, oy, "-xb") 

            plt.plot(px, py, "-r") 

            plt.plot(ipx, ipy, "or") 

            plt.axis("equal") 

            plt.grid(True) 

            plt.pause(0.1) 

 

        plt.cla() 

        plt.plot(ox, oy, "-xb") 

        plt.plot(px, py, "-r") 

        plt.axis("equal") 

        plt.grid(True) 

        plt.pause(0.1) 

        plt.close() 

 

#pdb.set_trace() 

def main():  # pragma: no cover 

    print("start!!") 

     

    ox = [0.0, 20.0, 50.0, 100.0, 80.0, 40.0, 0.0] 

    oy = [0.0, -40.0, -200.0, 60.0, 40.0, 100.0, 0.0] 

    resolution = 5.0 

    planning_animation(ox, oy, resolution) 

     

    ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0, 0.0] 
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    oy = [0.0, -40.0, -200.0, 60.0, 100.0, 100.0, 0.0] 

    resolution = 5.0 

    planning_animation(ox, oy, resolution) 

     

     

    ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0, 0.0] 

    oy = [0.0, -20.0, 0.0, 30.0, 60.0, 80.0, 0.0] 

    resolution = 5.0 

    planning_animation(ox, oy, resolution) 

     

     

    ox = [0.0, 50.0, 50.0, 0.0, 0.0] 

    oy = [0.0, 0.0, 30.0, 30.0, 0.0] 

    resolution = 1.3 

    planning_animation(ox, oy, resolution) 

     

    ox = [0.0, 20.0, 50.0, 200.0, 130.0, 40.0, 0.0] 

    oy = [0.0, -80.0, 0.0, 30.0, 60.0, 80.0, 0.0] 

    resolution = 5.0 

    planning_animation(ox, oy, resolution) 

     

     

    if do_animation: 

        plt.show() 

    print("done!!") 

 

 

if __name__ == '__main__': 

    main() 
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APPENDIX B 

PYTHON GENERATE GRID MAP MATPLOTLIB 
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import matplotlib.pyplot as plt 

import numpy as np 

 

 

class GridMap: 

    """ 

    GridMap class 

    """ 

 

    def __init__(self, width, height, resolution, 

                 center_x, center_y, init_val=0.0): 

        """__init__ 

 

        :param width: number of grid for width 

        :param height: number of grid for heigt 

        :param resolution: grid resolution [m] 

        :param center_x: center x position  [m] 

        :param center_y: center y position [m] 

        :param init_val: initial value for all grid 

        """ 

        self.width = width 

        self.height = height 

        self.resolution = resolution 

        self.center_x = center_x 

        self.center_y = center_y 

 

        self.left_lower_x = self.center_x - self.width / 2.0 * 

self.resolution 

        self.left_lower_y = self.center_y - self.height / 2.0 * 

self.resolution 

 

        self.ndata = self.width * self.height 

        self.data = [init_val] * self.ndata 

 

    def get_value_from_xy_index(self, x_ind, y_ind): 

        """get_value_from_xy_index 

 

        when the index is out of grid map area, return None 

 

        :param x_ind: x index 

        :param y_ind: y index 

        """ 

 

        grid_ind = self.calc_grid_index_from_xy_index(x_ind, y_ind) 

 

        if 0 <= grid_ind < self.ndata: 

            return self.data[grid_ind] 

        else: 

            return None 

 

    def get_xy_index_from_xy_pos(self, x_pos, y_pos): 

        """get_xy_index_from_xy_pos 

 

        :param x_pos: x position [m] 

        :param y_pos: y position [m] 

        """ 
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        x_ind = self.calc_xy_index_from_position( 

            x_pos, self.left_lower_x, self.width) 

        y_ind = self.calc_xy_index_from_position( 

            y_pos, self.left_lower_y, self.height) 

 

        return x_ind, y_ind 

 

    def set_value_from_xy_pos(self, x_pos, y_pos, val): 

        """set_value_from_xy_pos 

 

        return bool flag, which means setting value is succeeded or 

not 

 

        :param x_pos: x position [m] 

        :param y_pos: y position [m] 

        :param val: grid value 

        """ 

 

        x_ind, y_ind = self.get_xy_index_from_xy_pos(x_pos, y_pos) 

 

        if (not x_ind) or (not y_ind): 

            return False  # NG 

 

        flag = self.set_value_from_xy_index(x_ind, y_ind, val) 

 

        return flag 

 

    def set_value_from_xy_index(self, x_ind, y_ind, val): 

        """set_value_from_xy_index 

 

        return bool flag, which means setting value is succeeded or 

not 

 

        :param x_ind: x index 

        :param y_ind: y index 

        :param val: grid value 

        """ 

 

        if (x_ind is None) or (y_ind is None): 

            return False, False 

 

        grid_ind = int(y_ind * self.width + x_ind) 

 

        if 0 <= grid_ind < self.ndata: 

            self.data[grid_ind] = val 

            return True  # OK 

        else: 

            return False  # NG 

 

    def set_value_from_polygon(self, pol_x, pol_y, val, inside=True): 

        """set_value_from_polygon 

 

        Setting value inside or outside polygon 

 

        :param pol_x: x position list for a polygon 

        :param pol_y: y position list for a polygon 



 

128 
 

        :param val: grid value 

        :param inside: setting data inside or outside 

        """ 

 

        # making ring polygon 

        if (pol_x[0] != pol_x[-1]) or (pol_y[0] != pol_y[-1]): 

            pol_x.append(pol_x[0]) 

            pol_y.append(pol_y[0]) 

 

        # setting value for all grid 

        for x_ind in range(self.width): 

            for y_ind in range(self.height): 

                x_pos, y_pos = 

self.calc_grid_central_xy_position_from_xy_index( 

                    x_ind, y_ind) 

 

                flag = self.check_inside_polygon(x_pos, y_pos, pol_x, 

pol_y) 

 

                if flag is inside: 

                    self.set_value_from_xy_index(x_ind, y_ind, val) 

 

    def calc_grid_index_from_xy_index(self, x_ind, y_ind): 

        grid_ind = int(y_ind * self.width + x_ind) 

        return grid_ind 

 

    def calc_grid_central_xy_position_from_xy_index(self, x_ind, 

y_ind): 

        x_pos = self.calc_grid_central_xy_position_from_index( 

            x_ind, self.left_lower_x) 

        y_pos = self.calc_grid_central_xy_position_from_index( 

            y_ind, self.left_lower_y) 

 

        return x_pos, y_pos 

 

    def calc_grid_central_xy_position_from_index(self, index, 

lower_pos): 

        return lower_pos + index * self.resolution + self.resolution / 

2.0 

 

    def calc_xy_index_from_position(self, pos, lower_pos, max_index): 

        ind = int(np.floor((pos - lower_pos) / self.resolution)) 

        if 0 <= ind <= max_index: 

            return ind 

        else: 

            return None 

 

    def check_occupied_from_xy_index(self, xind, yind, 

occupied_val=1.0): 

 

        val = self.get_value_from_xy_index(xind, yind) 

 

        if val is None or val >= occupied_val: 

            return True 

        else: 

            return False 



 

129 
 

 

    def expand_grid(self): 

        xinds, yinds = [], [] 

 

        for ix in range(self.width): 

            for iy in range(self.height): 

                if self.check_occupied_from_xy_index(ix, iy): 

                    xinds.append(ix) 

                    yinds.append(iy) 

 

        for (ix, iy) in zip(xinds, yinds): 

            self.set_value_from_xy_index(ix + 1, iy, val=1.0) 

            self.set_value_from_xy_index(ix, iy + 1, val=1.0) 

            self.set_value_from_xy_index(ix + 1, iy + 1, val=1.0) 

            self.set_value_from_xy_index(ix - 1, iy, val=1.0) 

            self.set_value_from_xy_index(ix, iy - 1, val=1.0) 

            self.set_value_from_xy_index(ix - 1, iy - 1, val=1.0) 

 

    @staticmethod 

    def check_inside_polygon(iox, ioy, x, y): 

 

        npoint = len(x) - 1 

        inside = False 

        for i1 in range(npoint): 

            i2 = (i1 + 1) % (npoint + 1) 

 

            if x[i1] >= x[i2]: 

                min_x, max_x = x[i2], x[i1] 

            else: 

                min_x, max_x = x[i1], x[i2] 

            if not min_x < iox < max_x: 

                continue 

 

            tmp1 = (y[i2] - y[i1]) / (x[i2] - x[i1]) 

            if (y[i1] + tmp1 * (iox - x[i1]) - ioy) > 0.0: 

                inside = not inside 

 

        return inside 

 

    def print_grid_map_info(self): 

        print("width:", self.width) 

        print("height:", self.height) 

        print("resolution:", self.resolution) 

        print("center_x:", self.center_x) 

        print("center_y:", self.center_y) 

        print("left_lower_x:", self.left_lower_x) 

        print("left_lower_y:", self.left_lower_y) 

        print("ndata:", self.ndata) 

 

    def plot_grid_map(self, ax=None): 

 

        grid_data = np.reshape(np.array(self.data), (self.height, 

self.width)) 

        if not ax: 

            fig, ax = plt.subplots() 
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        heat_map = ax.pcolor(grid_data, cmap="Blues", vmin=0.0, 

vmax=1.0) 

        plt.axis("equal") 

        # plt.show() 

 

        return heat_map 

 

 

def test_polygon_set(): 

    ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0] 

    oy = [0.0, -20.0, 0.0, 30.0, 60.0, 80.0] 

 

    grid_map = GridMap(600, 290, 0.7, 60.0, 30.5) 

 

    grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False) 

 

    grid_map.plot_grid_map() 

 

    plt.axis("equal") 

    plt.grid(True) 

 

 

def test_position_set(): 

    grid_map = GridMap(100, 120, 0.5, 10.0, -0.5) 

 

    grid_map.set_value_from_xy_pos(10.1, -1.1, 1.0) 

    grid_map.set_value_from_xy_pos(10.1, -0.1, 1.0) 

    grid_map.set_value_from_xy_pos(10.1, 1.1, 1.0) 

    grid_map.set_value_from_xy_pos(11.1, 0.1, 1.0) 

    grid_map.set_value_from_xy_pos(10.1, 0.1, 1.0) 

    grid_map.set_value_from_xy_pos(9.1, 0.1, 1.0) 

 

    grid_map.plot_grid_map() 

 

 

def main(): 

    print("start!!") 

 

    test_position_set() 

    test_polygon_set() 

 

    plt.show() 

 

    print("done!!") 

 

 

if __name__ == '__main__': 

    main() 
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