Please use this identifier to cite or link to this item: http://www.repository.rmutt.ac.th/xmlui/handle/123456789/435
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPepore, Surarit
dc.contributor.authorSukbot, Bodinchat
dc.date.accessioned2012-03-05T05:34:56Z
dc.date.accessioned2020-09-24T04:56:26Z-
dc.date.available2012-03-05T05:34:56Z
dc.date.available2020-09-24T04:56:26Z-
dc.date.issued2009-12
dc.identifier.citationfrom Web of Scienceen_US
dc.identifier.issn0577-9073
dc.identifier.urihttp://www.repository.rmutt.ac.th/dspace/handle/123456789/435-
dc.descriptionSchwinger Method and Path Integral with Generalized Canonical Transformation for a Harmonic Oscillator with Time-Dependent Mass and Frequency / httP://isiknowledge.comen_US
dc.description.abstractThe exact propagator for a harmonic oscillator with time-dependent mass and frequency is found by the Schwinger method and a path integral with a generalized canonical transformation. In the Schwinger formalism, the propagator can be obtained by basic operator algebra and elementary integrations. In the path integral method, it call be shown that such a propagator can be derived from that for a unit mass and frequency oscillator in a new space-time coordinate system with the help of a generalized canonical transformation. The power of propagator methods for solving time-dependent Hamiltonian systems is also discussed.en_US
dc.language.isoenen_US
dc.publisherPHYSICAL SOC REPUBLIC CHINA, CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWANen_US
dc.subjectFEYNMAN PROPAGATORen_US
dc.subjectACTION PRINCIPLEen_US
dc.subjectMAGNETIC-FIELDen_US
dc.titleSchwinger Method and Path Integral with Generalized Canonical Transformation for a Harmonic Oscillator with Time-Dependent Mass and Frequencyen_US
dc.typeArticleen_US
Appears in Collections:บทความ (Article)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.